Project description:Pseudomonas aeruginosa airway infection is the primary cause of death in Cystic Fibrosis (CF). During early infection P. aeruginosa produces multiple virulence factors, which cause acute pulmonary disease and are largely regulated by quorum sensing (QS) intercellular signalling networks. Longitudinal clinical studies have observed the loss, through adaptive mutation, of QS and QS-related virulence in late chronic infection. Although the mechanisms are not understood, infection with QS mutants has been linked to a worse outcome for CF patients. By comparing QS-active and QS-inactive P. aeruginosa CF isolates, we have identified novel virulence factors and pathways associated with QS disruption. In particular, we noted factors implicating increased intra-phagocyte survival. Our data present novel targets as candidates for future CF therapies. Some of these targets are already the subject of drug development programmes for the treatment of other bacterial pathogens and may provide cross-over benefit to the CF population. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE25128: Gene expression data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections GSE25129: Comparative genomic hybridisation data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections
Project description:Pseudomonas aeruginosa is a virulent opportunistic pathogen responsible for high morbity in COPD, burns , implanted medical devices and cystic fibrosis. Pseudomonas aeruginosa is a problematic colonizer of the human lung. P. aeruginosa produces a phospholipase C (PlcH) that degrades choline-containing lipids such as phosphatidylcholine and sphingomylein that are found in lung surfactant and in host membranes. In this study, we analyzed gene expression in mutants defective in PlcH production (delta-plcH and delta-gbdR) and the wild type when growing in medium with lung surfactant. Pseudomonas aeruginosa was cultured in liquid cultures with aeration in a defined medium with Survanta, a lung surfactant replacement. Cultures were harvested during mid-exponential phase, and RNA was isolated for microarray analysis. The P. aeruginosa strain PAO1 wild type gene expression was compared to expression profiles from delta-gbdR and delta-plcHR deletion mutants, two mutants defective in PlcH production.
Project description:Arrays comparing Pseudomonas aeruginosa growth in a defined synthetic cystic fibrosis sputum medium with and without aromatic amino acids. Additional arrays comparing wild-type Pseudomonas aeruginosa and phhR mutant P. aeruginosa in defined synthetic cystic fibrosis sputum medium.
Project description:Pseudomonas aeruginosa is a virulent opportunistic pathogen responsible for high morbity in COPD, burns , implanted medical devices and cystic fibrosis. Pseudomonas aeruginosa is a problematic colonizer of the human lung. P. aeruginosa produces a phospholipase C (PlcH) that degrades choline-containing lipids such as phosphatidylcholine and sphingomylein that are found in lung surfactant and in host membranes. In this study, we analyzed gene expression in mutants defective in PlcH production (delta-plcH and delta-gbdR) and the wild type when growing in medium with lung surfactant.
Project description:A shaving proteomic approach was applied to explore surface protein expression of multi- and pan-drug resistant strains of Pseudomonas aeruginosa isolated from the airways of cystic fibrosis patients with long-term chronic colonization compared to wild-type antibiotic-sensitive strains isolated from patients with recent infection.
Project description:The gene expression of the opportunictic cystic fibrosis lung pathogen Burkholderia multivorans ATCC 17616 was investigated under different growth conditions relevant for growth in the cystic fibrosis lung.
Project description:The gene expression of the opportunictic cystic fibrosis lung pathogen Burkholderia multivorans ATCC 17616 was investigated under different growth conditions relevant for growth in the cystic fibrosis lung.
Project description:The gene expression of the opportunictic cystic fibrosis lung pathogen Burkholderia multivorans ATCC 17616 was investigated under different growth conditions relevant for growth in the cystic fibrosis lung.