Project description:16s RNA gene sequencing data from seawater, bed sediment and steel corrosion samples from Shoreham Harbour, UK, collected to allow bacterial species comparisons between microbially influenced corrosion, the surrounding seawater, and the sea bed sediment at the seafloor and 50cm depth below seafloor.
Project description:Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme’s response (R2, 0.51–0.80, p < 0.01 in all cases). Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide (latitude 62.2°S–16°N, MAT –1.4ºC–29.5ºC) validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility, confirm the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response
Project description:Sulfur metabolism in the deep-sea cold seep has been mentioned to have an important contribution to the biogeochemical cycle of sulfur in previous studies. And sulfate reducing bacteria have also been considered to be a dominant microbial population in the deep-sea cold seep and play a crucial role in this process. However, most of sulfate reducing bacteria from cold seep still cannot be purely cultured under laboratory conditions, therefore the actual sulfur metabolism pathways in sulfate reducing bacteria from the deep-sea cold seep have remained unclear. Here, we isolate and pure culture a typical sulfate reducing bacterium Desulfovibrio marinus CS1 from the sediment sample of the deep-sea cold seep in the South China Sea, which provides a probability to understand the sulfur metabolism in the cold seep.
Project description:Chemical analysis of the compounds present in sediment, although informative, often is not indicative of the downstream biological effects that these contaminants exert on resident aquatic organisms. More direct molecular methods are needed to determine if marine life is affected by exposure to sediments. In this study, we used an aquatic multispecies microarray and q-PCR to investigate the effects on gene expression in juvenile sea bream (Sparus aurata) of two contaminated sediments defined as sediment 1 and 2 respectively, from marine areas in Northern Italy.
Project description:To determine the transcriptional effects of a novel plant-based compound, dehydrobrachylaenolide, on P. falciparum, parasite cultures were treated with the compound over time. Samples were taken for analysis 2, 6, and 12 hours post-invasion of human red blood cells. Control cultures were treated simultaneously with DMSO, and samples isolated at 2, 6, and 12 hours for transcriptional analysis. Background Antimalarial drug resistance threatens to undermine efforts to eliminate this deadly disease. The resulting omnipresent requirement for drugs with novel modes of action prompted a national consortium initiative to discover new antiplasmodial agents from South African medicinal plants. One of the plants selected for investigation was Dicoma anomala subsp. gerrardii, based on its ethnomedicinal profile. Methods Standard phytochemical analysis techniques including solvent-solvent extraction, thin-layer and column chromatography, were used to isolate the main active constituent of Dicoma anomala subsp. gerrardii. The crystallised pure compound was identified using nuclear magnetic resonance spectroscopy, mass spectrometry and X-ray crystallography. The compound was tested in vitro on Plasmodium falciparum cultures using the parasite lactate dehydrogenase assay. The effects of treatment on the P. falciparum transcriptome were subsequently investigated by treating ring-stage parasites (alongside untreated controls) with the pure compound, followed by oligonucleotide microarray and data analysis. Results The main active constituent was identified as dehydrobrachylaenolide, a eudesmanolide-type sesquiterpene lactone. The compound demonstrated an in vitro IC50 of 245.6 nM, which was comparable to the IC50 of chloroquine, against a chloroquine-resistant strain (K1) of P. falciparum. Microarray data analysis identified a cluster of unique genes that were differentially expressed as a result of the treatment and gene ontology analysis identified various biological processes that were significantly affected. Comparison of the dehydrobrachylaenolide treatment transcriptional dataset with a published artesunate (also a sesquiterpene lactone) dataset revealed little overlap. This suggests differentiated modes of action between the two compounds. Conclusions Dehydrobrachylaenolide could play a valuable role as a drug candidate to generate new antimalarial compounds with novel modes of action and favourable ADMET properties.