Proteomics

Dataset Information

0

Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis


ABSTRACT: Khajuria RK, Munschauer M, Ulirsch JC, Fiorini C, Leif S. Ludwig LS, McFarland SK, Abdulhay NJ, Specht H, Keshishian H, Mani DR, Jovanovic M, Ellis SR, Fulco CP, Engreitz JM, Schütz S, Lian J, Gripp KW,Weinberg OK, Pinkus GS, Gehrke L, Regev A, Lander ES, Gazda HT, Lee WY, Panse VG, Carr SA, Sankaran VG. Cell 2018, 173, 90–103. https://doi.org/10.1016/j.cell.2018.02.036. Blood cell formation is classically thought to occur through a hierarchical differentiation process, although recent studies have shown that lineage commitment may occur earlier in hematopoietic stem and progenitor cells (HSPCs). The relevance to human blood diseases and the underlying regulation of these refined models remain poorly understood. By studying a genetic blood disorder, Diamond-Blackfan anemia (DBA), where the majority of mutations affect ribosomal proteins and the erythroid lineage is selectively perturbed, we are able to gain mechanistic insight into how lineage commitment is programmed normally and disrupted in disease. We show that in DBA, the pool of available ribosomes is limited, while ribosome composition remains constant. Surprisingly, this global reduction in ribosome levels more profoundly alters translation of a select subset of transcripts. We show how the reduced translation of select transcripts in HSPCs can impair erythroid lineage commitment, illuminating a regulatory role for ribosome levels in cellular differentiation.

OTHER RELATED OMICS DATASETS IN: PRJNA350543

INSTRUMENT(S): Q Exactive

ORGANISM(S): Homo Sapiens (ncbitaxon:9606)

SUBMITTER: Steven A. Carr 

PROVIDER: MSV000080283 | MassIVE | Mon Oct 24 06:36:00 BST 2016

REPOSITORIES: MassIVE

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2021-10-16 | MSV000088238 | MassIVE
| PRJNA1103765 | ENA
2021-04-28 | PXD008650 | Pride
2021-09-28 | GSE128902 | GEO
2021-09-28 | GSE128512 | GEO
2016-09-29 | GSE85864 | GEO
2011-11-12 | E-GEOD-25626 | biostudies-arrayexpress
2023-11-22 | GSE206691 | GEO
2023-11-22 | GSE206690 | GEO
2010-12-01 | E-GEOD-22092 | biostudies-arrayexpress