Project description:It has been recognized that BRCA1, in the form of the BRCA1/BARD1 heterodimer, acting as an ubiquitin E3 ligase offered a possible mechanism to explain its pleiotrophic nature of BRCA1 activity. Our observation that mice lacking BRCA1 enzymatic activity are viable apart from male sterility was unexpected. Our results suggest that the E3 ligase activity of BRCA1 is largely dispensable for normal development and is not essential for all BRCA1 functions. Thus, many of the known and unknown functions of BRCA1 are likely to be mediated independent of its ability to catalyze ubiquitination. The genome copy number patterns were studied on the mice tumors that lacks E3 ubiqitin ligase activity of BRCA1 and were compared to copy number profile of mice lacking p53 and both brca1 and p53. Array CGH was performed using Agilent mouse CGH microarray 244K kit. Genomic DNA isolated from tumor tissue and its corresponding mouse tail were labelled with two different dyes and hybridized simultaneously on to microarray slides to perform comparitive genomic hybridization.
Project description:It has been recognized that BRCA1, in the form of the BRCA1/BARD1 heterodimer, acting as an ubiquitin E3 ligase offered a possible mechanism to explain its pleiotrophic nature of BRCA1 activity. Our observation that mice lacking BRCA1 enzymatic activity are viable apart from male sterility was unexpected. Our results suggest that the E3 ligase activity of BRCA1 is largely dispensable for normal development and is not essential for all BRCA1 functions. Thus, many of the known and unknown functions of BRCA1 are likely to be mediated independent of its ability to catalyze ubiquitination. The genome copy number patterns were studied on the mice tumors that lacks E3 ubiqitin ligase activity of BRCA1 and were compared to copy number profile of mice lacking p53 and both brca1 and p53.
Project description:To identify substrates of the ubiquitinating E3 enzyme Rsp5 we applied purified Rsp5 to duplicate protein arrays. The Rsp proteins were expressed as fusion proteins to GST. We used as a control Ubr1, a RING domain containing E3 ligase We analyzed Rsp5 from S.cerevisiae on duplicate arrays, with four control chips, two without Rsp5 and two with Ubr1.
Project description:Inhibiton of NSD2 by shRNA induces K562 differentiation via increasing erythroid specfic lineage factors The human myelogenous leukemic cell line, K562 undergoes erythroid differentiation by exposure to hemin. Here, we uncovered NSD2 as an innate erythroid differentiation-related factor through the genome-wide CRISPR library screening and explored the regulatory role of NSD2 during myeloid leukemia cell differentiation. We found that NSD2 stability was disrupted by poly-ubiquitination in differentiated K562 cells. Proteomic analysis revealed interaction between NSD2 and an E3 ubiquitin ligase, BRCA1 which ubiquitylates NSD K292 residue. Depletion of BRCA1 stabilized NSD2 protein and suppressed K562 cell differentiation. Furthermore, BRCA1 protein level was decreased in bone marrow tumor, while NSD2 level was elevated. Surprisingly, among BRCA1 mutation(s) discovered in lymphoma patients, BRCA1 K1183R prevented its translocation into the nucleus and did not reduce NSD2 protein level in hemin-treated K562 cells and eventually disrupted cell differentiation. Our results indicated that regulation of NSD2 stability by BRCA1-mediated ubiquitination as a potential therapeutic target process in multiple myeloma.
Project description:The TRIM37 gene is mutatedin Mulbery nanism, a rare autosomal recessive disorder, and is in the 17q23 chromosomal region that is amplified in up to ~40% of breast cancers. Trim37 contains a RING finger domain, a hallmark of E3 ubiquitin ligases, but the protein substrate(s) of Trim37 is unknown. Mono-ubiquitination of histone H2A is a chromatin modification associated with transcriptional repression and here we report that Trim37 is an H2A ubiquitin ligase. Genome-wide Chip-CHIP experiments indicate that in human breast cancer cells containing amplified 17q23, Trim37 is bound to the promoters of many tumor suppressor genes. RNA interference (RNAi)-mediated knockdown of Trim37 results in loss of ubiquitinated H2A, dissociation of PRC1 and PRC2, and transcriptional reactivation of silenced genes. Knockdown of Trim37 in human breast cancer cells containing amplified 17q23 substantially decreases tumor growth in mouse xenografts. Collectively, our results reveal Trim37 as a new H2A ubiquitin ligase that is overexpressed in a subset of breast cancers and redirects PRC2 to silence tumor suppressors and other genes resulting in oncogenesis. Identification of TRIM37 Binding targets in MCF7 cells from the two replicate experiments
Project description:To identify substrates of the ubiquitinating E3 enzyme Rsp5 we applied purified Rsp5 to duplicate protein arrays. The Rsp proteins were expressed as fusion proteins to GST. We used as a control Ubr1, a RING domain containing E3 ligase
Project description:Deficiencies in the BRCA1 tumor suppressor gene are the main cause of hereditary breast and ovarian cancer. BRCA1 is involved in the Homologous Recombination DNA repair pathway, and, together with BARD1, forms a heterodimer with ubiquitin E3 activity. The relevance of the BRCA1/BARD1 ubiquitin E3 activity for tumor suppression and DNA repair remains controversial and most efforts aimed to identify BRCA1/BARD1 ubiquitination substrates rely on indirect evidence. Here, we observed that the BRCA1/BARD1 ubiquitin E3 activity was not required for Homologous Recombination or resistance to Olaparib. Using TULIP2 methodology, which enables the direct identification of E3-specific ubiquitination substrates, we identified substrates for BRCA1/BARD1. We found that PCNA is ubiquitinated by BRCA1/BARD1 in unperturbed conditions independently of RAD18. PCNA ubiquitination by BRCA1/BARD1 avoids the formation of ssDNA gaps during DNA replication and promotes continuous DNA synthesis. These results address the controversy about the function of BRCA1/BARD1 E3 activity in Homologous Recombination.
Project description:The human tumor antigen PRAME (Preferentially expressed antigen of melanoma) is frequently overexpressed in tumors. High PRAME levels correlate with poor clinical outcome of several cancers, but the mechanisms by which PRAME could be involved in tumorigenesis remain largely elusive. We applied protein-complex purification strategies and identified PRAME as a substrate recognition subunit of a Cullin2-based E3 ubiquitin ligase. Genome-wide chromatin immunoprecipitation experiments revealed that PRAME is specifically enriched at NF-Y promoters that are transcriptionally active, suggesting a role in gene activation. Our results are consistent with the involvement of the PRAME ubiquitin ligase complex in NF-Y-mediated transcriptional regulation. ChIP-seq binding profiles of PRAME (ChIP-seq using the preimmune serum was used as negative control), NFYA, and NFYB, and expression analysis by RNA-seq in K562 human leukemia cell line
Project description:Deficiencies in the BRCA1 tumor suppressor gene are the main cause of hereditary breast and ovarian cancer. BRCA1 is involved in the Homologous Recombination DNA repair pathway, and, together with BARD1, forms a heterodimer with ubiquitin E3 activity. The relevance of the BRCA1/BARD1 ubiquitin E3 activity for tumor suppression and DNA repair remains controversial and most efforts aimed to identify BRCA1/BARD1 ubiquitination substrates rely on indirect evidence. Here, we observed that the BRCA1/BARD1 ubiquitin E3 activity was not required for Homologous Recombination or resistance to Olaparib. Using TULIP2 methodology, which enables the direct identification of E3-specific ubiquitination substrates, we identified substrates for BRCA1/BARD1. PCNA is ubiquitinated by BRCA1/BARD1 in unperturbed conditions independently of RAD18, avoiding the formation of ssDNA gaps during DNA replication and promoting replication fork stability upon replication stress, solving the controversy about the function of BRCA1/BARD1 E3 activity in Homologous Recombination.