Project description:Comparison of females mated to males null for Sex-Peptide (SP0, Liu, H. and E. Kubli, Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9929-33) or to control, Sex-Peptide producing, males. Comparisons were made at 3 and 6 hours after mating, in dissected Abdomen parts.<br>
Project description:Comparison of females mated to males null for Sex-Peptide (SP0, Liu, H. and E. Kubli, Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9929-33) or to control, Sex-Peptide producing, males. Comparisons were made at 3 and 6 hours after mating, in in dissected Abdomen body parts.
Project description:Comparison of females mated to males null for Sex-Peptide (SP0, Liu, H. and E. Kubli, Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9929-33) or to control, Sex-Peptide producing, males. Comparisons were made at 3 and 6 hours after mating, in dissected Head - Thorax body parts.
Project description:Comparison of females mated to males null for Sex-Peptide (SP0, Liu, H. and E. Kubli, Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9929-33) or to control, Sex-Peptide producing, males. Comparisons were made at 3 and 6 hours after mating, in dissected Head-Thorax body parts.
Project description:Post-mating responses play a vital role in successful reproduction across diverse species. In fruit flies, sex peptide (SP) binds to sex peptide receptor (SPR), triggering a series of post-mating responses. However, the origin of SPR predates the emergence of SP. The evolutionary origins of the interactions between SP and SPR and the mechanisms by which they interact remain enigmatic. In this study, we used ancestral sequence reconstruction, AlphaFold2 predictions, and molecular dynamics simulations to study SP-SPR interactions and their origination. Using AlphaFold2 and long-time molecular dynamics (MD) simulations, we demonstrate the structure and dynamics of SP-SPR interactions. We show that SP potentially binds to the ancestral states of Diptera SPR. Notably, we found that only a few amino acid changes in SPR are sufficient for the formation of SP-SPR interactions. Ancestral sequence reconstruction and MD simulations further reveal that SP-SPR interacts through residues that are mostly located at the SPR interface of an ancestral ligand, myoinhibitory peptides (MIPs). We propose a potential mechanism whereby SP-SPR interactions arise from pre-existing MIP-SPR interface as well as early chance events that created novel SP-specific SP-SPR interactions. Our findings provide new insights into the origin and evolution of SP-SPR interactions and their relationship with MIP-SPR interactions.
Project description:Pain is a subjective experience derived from complex interactions among biological, environmental, and psychosocial pathways. Sex differences in pain sensitivity and chronic pain prevalence are well established. However, the molecular causes underlying these sex dimorphisms are poorly understood particularly with regard to the role of the peripheral nervous system. Here we sought to identify shared and distinct gene networks functioning in the peripheral nervous systems that may contribute to sex differences of pain after nerve injury. We performed RNA-seq on dorsal root ganglia following chronic constriction injury of the sciatic nerve in male and female rats. Analysis from paired naive and injured tissues showed that 1456 genes were differentially expressed between sexes. Appreciating sex-related gene expression differences and similarities in neuropathic pain models may help to improve the translational relevance to clinical populations and efficacy of clinical trials of this major health issue.
Project description:We have extended the sample handling and data analysis methods used to determine sex from archaeological fragments of teeth. The dental enamel protein amelogenin is isomorphic based on sex; we quantify the expression of peptide fragments of AMELX and AMELY using MS2 proteomics.
Project description:Sex Peptide, a seminal fluid protein of Drosophila melanogaster males, elicits an array of post-mating responses in females, including decreased receptivity to re-mating, and increased egg laying, activity and food intake, with a preference for protein-rich food. To determine how one protein can have such widespread effects, we set out to dissect the genetic architecture of the female’s response to Sex Peptide, to determine whether Sex Peptide alters the expression of several regulators targeted to specific post-mating responses or acts on a pleiotropic regulator that controls multiple responses. We performed bulk RNA-seq of female heads at 10 time points within the first 24 hours after mating, sampling virgin females, females mated to control males and females mated to Sex Peptide-null males. Using this high-resolution time series, we identified mating- and Sex Peptide-dependent differentially expressed genes and discovered the presence of differentially used exons. We constructed gene regulatory networks using clustering and motif enrichment analyses, and identified cell types in which these changes might take place using deconvolution of our bulk RNA-seq dataset. One key network included metabolic genes which might change in expression in the female’s fat body. A second network included genes with neuronal functions, whose changes might be located in neurons or sensory organs in the female’s head. Within these networks we identified known molecular regulators of the circadian clock. Further, we found that many differentially expressed genes, and some differentially used exons, followed a circadian rhythm in virgin females, and that this rhythm was altered after mating with a Sex Peptide- male.
Project description:We sought to investigate the scope of cellular and molecular changes within a mouse’s olfactory system as a function of its exposure to odors emitted from members of the opposite sex. To this end, we housed mice either separated from members of the opposite sex (sex-separated) or together with members of the opposite sex (sex-combined) until six months of age and then profiled transcript levels within the main olfactory epithelium (MOE), vomeronasal organ (VNO), and olfactory bulb (OB) of the mice via RNA-seq. For each tissue type, we then analyzed gene expression differences between sex-separated males and sex-separated females (SM v SF), sex-combined males and sex-combined females (CM v CF), sex-separated females and sex-combined females (SF v CF), and sex-separated males and sex-combined males (SM v CM). Within both the MOE and VNO, we observed significantly more numerous gene expression differences between males and females when mice were sex-separated as compared to sex-combined. Chemoreceptors were highly enriched among the genes differentially expressed between males and females in sex-separated conditions, and these expression differences were found to reflect differences in the abundance of the corresponding sensory neurons.
Project description:This study utilized a network-based approach to characterize the blood transcriptome collected over the course of infection with influenza A virus from female and male ferrets to dissect sex-biased gene expression shaped by genetically determined differences. It provides molecular insights into genetically driven sex differences in transcriptional regulation of immune responses.