Project description:Intrahepatic cholestasis of pregnancy (ICP) is estimated to impact between 0.4% and 5% of pregnancies worldwide. This disease is associated with elevated maternal bile acids and frequently untoward neonatal outcomes such as respiratory distress and asphyxia. Multiple candidate genes have been implicated, but none have provided insight into the mechanisms of neonatal respiratory distress and death. Herein our studies demonstrate that maternal cholestasis (due to Abcb11 deficiency) produces 100% neonatal death within 24h due to atelectasis producing pulmonary hypoxia, which recapitulates the respiratory distress and asphyxia of human ICP. We show that these neonates have elevated pulmonary bile acids that are associated with disrupted structure of pulmonary surfactant. Maternal absence of Nr1i2 superimposed upon Abcb11 deficiency strongly increased neonatal survival and is directly related to reduced maternal bile acid concentrations. The mechanism accounting for reduced serum bile acids in the mothers deficient in both Nr1i2 and Abcb11 appears related to disrupted reabsorption of intestinal bile acids due to changes in transporter expression. These findings provide novel insights into pulmonary failure by revealing bile acids capability to disrupt the structure of surfactant producing collapsed alveoli, pulmonary failure and ultimately death. These findings have important implications for neonatal health especially when maternal bile acids are elevated during pregnancy and highlight a potential pathway and targets amenable to therapeutic intervention to ameliorate this condition.
Project description:Intrahepatic cholestasis of pregnancy (ICP) is estimated to impact between 0.4% and 5% of pregnancies worldwide. This disease is associated with elevated maternal bile acids and frequently untoward neonatal outcomes such as respiratory distress and asphyxia. Multiple candidate genes have been implicated, but none have provided insight into the mechanisms of neonatal respiratory distress and death. Herein our studies demonstrate that maternal cholestasis (due to Abcb11 deficiency) produces 100% neonatal death within 24h due to atelectasis producing pulmonary hypoxia, which recapitulates the respiratory distress and asphyxia of human ICP. We show that these neonates have elevated pulmonary bile acids that are associated with disrupted structure of pulmonary surfactant. Maternal absence of Nr1i2 superimposed upon Abcb11 deficiency strongly increased neonatal survival and is directly related to reduced maternal bile acid concentrations. The mechanism accounting for reduced serum bile acids in the mothers deficient in both Nr1i2 and Abcb11 appears related to disrupted reabsorption of intestinal bile acids due to changes in transporter expression. These findings provide novel insights into pulmonary failure by revealing bile acids capability to disrupt the structure of surfactant producing collapsed alveoli, pulmonary failure and ultimately death. These findings have important implications for neonatal health especially when maternal bile acids are elevated during pregnancy and highlight a potential pathway and targets amenable to therapeutic intervention to ameliorate this condition. We used microarrays to measure changes in gene expression profiles in lung tissues from Abcb11+/- lungs after interbreeding C57BL/6 wild-type female or C57BL/6 Abcb11-/- female mice against either C57BL/6 wild-type male mice or C57BL/6 Abcb11-/- male mice to create only heterozygote offspring. We also measured profiles in liver tissues from age-matched C57BL/6 wild-type and C57BL/6 Abcb11-/- mice. Lung tissues were collected from day E17.5, E18.5 and neonatal (N0) mice. Liver tissues were collected from 1.5-month-old C57BL/6 wildtype and Abcb11-/- mice.
Project description:Liver sinusoidal endothelial cells (LSEC) are unique endothelial cell typelining the sinusoids of the liver and we have shown that these cells respond in a unique matter when exposed to saturated and unsaturated free fatty acids (FFA) and bile acids. We used microarray to analyze the transcriptional differences between the LSEC exposed to free fatty acids and bile acid receptor agonists to further shed light on their role in non-alcoholic fatty liver disease. The Murine Liver Sinusoidal Endothelial Cell Line (TSEC) was treated with palmitic and oleic acid or the bile acid receptor agonist INT-767 for 8 hours. Total RNA was then harvested to determine transcriptional differences.
Project description:Liver sinusoidal endothelial cells (LSEC) are unique endothelial cell typelining the sinusoids of the liver and we have shown that these cells respond in a unique matter when exposed to saturated and unsaturated free fatty acids (FFA) and bile acids. We used microarray to analyze the transcriptional differences between the LSEC exposed to free fatty acids and bile acid receptor agonists to further shed light on their role in non-alcoholic fatty liver disease.
Project description:Initial single 2fold probe was designed at the Landegren lab in Uppsala University, and the following experiments were performed at the Broad Institute at the Mikkelsen lab.
Project description:Microbial transformation of bile acids affects intestinal immune homeostasis but its impact on inflammatory pathologies remains largely unknown. Using a mouse model of graft-versus-host disease (GVHD), we found that T cell-driven inflammation decreased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and reduced the levels of unconjugated and microbe-derived bile acids. Several microbe-derived bile acids attenuated farnesoid X receptor (FXR) activation, suggesting that loss of these metabolites during inflammation may increase FXR activity and exacerbate the course of disease. Indeed, mortality increased with pharmacological activation of FXR and decreased with its genetic ablation in donor T cells during mouse GVHD. Furthermore, patients with GVHD after allogeneic hematopoietic cell transplantation showed similar loss of BSH and the associated reduction in unconjugated and microbe-derived bile acids. Additionally, the FXR antagonist ursodeoxycholic acid reduced the proliferation of human T cells and was associated with a lower risk of GVHD-related mortality in patients. We propose that dysbiosis and loss of microbe-derived bile acids during inflammation may be an important mechanism to amplify T cell-mediated diseases.
Project description:Specific bile acids are potent signaling molecules that modulate metabolic pathways affecting lipid, glucose and bile acid homeostasis, and the microbiota. Bile acids are synthesized from cholesterol in the liver, and the key enzymes involved in bile acid synthesis (Cyp7a1, Cyp8b1) are regulated transcriptionally by the nuclear receptor FXR. We have identified an FXR-regulated pathway upstream of a transcriptional repressor that controls multiple bile acid metabolism genes. We identify MafG as an FXR target gene and show that hepatic MAFG overexpression represses genes of the bile acid synthetic pathway and modifies the biliary bile acid composition. In contrast, loss-of-function studies using MafG(+/-) mice causes de-repression of the same genes with concordant changes in biliary bile acid levels. Finally, we identify functional MafG response elements in bile acid metabolism genes using ChIP-seq analysis. Our studies identify a molecular mechanism for the complex feedback regulation of bile acid synthesis controlled by FXR.
Project description:Decreased bile secretion in rodents by either ligation of the common bile duct or induction of cirrhosis causes changes in the small intestine, including bacterial overgrowth and translocation across the mucosal barrier. Oral administration of bile acids inhibits these effects. The genes regulated by FXR in ileum suggested that it might contribute to the enteroprotective actions of bile acids. To test this hypothesis, mice were administered either GW4064 or vehicle for 2 days and then subjected to bile duct ligation (BDL) or sham operation. After 5 days, during which GW4064 or vehicle treatment was continued, the mice were killed and their intestines were analyzed for FXR target gene expression.
Project description:In addition to their role as a digestive detergent, bile acids have the ability to modulate the expression of genes. The intestinal content of cholic acids (CA) fluctuated in response to the daily feeding-fasting cycle; therefore, we hypothesized that the temporal accumulation of CA may affect the expression of genes in intestinal epithelial cells. To screen bile acid-regulated genes, we performed oligonucleotide microarray analyses using RNA isolated from the CA-treated intestinal cells of mice. Several types of genes were screened as candidates for bile acid-regulated genes. They included genes that encoded lipid metabolism-related proteins, receptors, transcriptional factors, and plasma-membrane transporters.