Proteomics

Dataset Information

0

Tetracyclines Modify Translation By Targeting Key Human rRNA Substructures


ABSTRACT: Mortison JD, Schenone M, Myers JA, Zhang Z, Chen L, Ciarlo C, Comer E, Natchiar SK, Carr SA, Klaholz BP, Myers AG. Cell Chem Bio 2018. Apart from their antimicrobial properties, tetracyclines demonstrate clinically validated effects in the amelioration of pathological inflammation and human cancer. Delineation of the target(s) and mechanism(s) responsible for these effects, however, has remained elusive. Here, employing quantitative mass spectrometry-based proteomics, we identified human 80S ribosomes as targets of the tetracyclines Col-3 and doxycycline. We then developed in-cell click selective crosslinking with RNA sequence profiling (icCL-Seq) to map binding sites for these tetracyclines on key human rRNA substructures at nucleotide resolution. Importantly, we found that structurally and phenotypically variant tetracycline analogs could chemically discriminate these rRNA binding sites. We also found that tetracyclines both subtly modify human ribosomal translation and selectively activate the cellular integrated stress response (ISR). Together, the data reveal that targeting of specific rRNA substructures, activation of the ISR, and inhibition of translation are correlated with the anti-proliferative properties of tetracyclines in human cancer cell lines.

INSTRUMENT(S): LTQ Orbitrap

ORGANISM(S): Homo Sapiens (ncbitaxon:9606)

SUBMITTER: Steven A. Carr  

PROVIDER: MSV000082819 | MassIVE | Wed Aug 15 09:02:00 BST 2018

REPOSITORIES: MassIVE

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2019-07-16 | PXD011286 | Pride
2018-08-31 | E-MTAB-7161 | biostudies-arrayexpress
2016-06-23 | GSE70230 | GEO
2023-11-14 | GSE233690 | GEO
2018-01-19 | GSE105248 | GEO
2022-02-16 | PXD029751 | Pride
2024-11-28 | GSE280137 | GEO
2024-11-28 | GSE264668 | GEO
2015-10-23 | E-GEOD-74277 | biostudies-arrayexpress
2021-08-16 | GSE153473 | GEO