Project description:Streptomyces sp. M7 has demonstrated ability to remove lindane from culture media and soils. In this study, we used MS-based label-free quantitative proteomic to understand lindane degradation and its metabolic context in Streptomyces sp. M7. We identified the proteins involved in the up-stream degradation pathway. Our results demonstrated that mineralization of lindane is feasible since proteins from an unusual down-stream degradation pathway were also identified. Degradative steps were supported by an active catabolism that supplied energy and reducing equivalents in the form of NADPH. This is the first study in which degradation steps of an organochlorine compound and metabolic context are elucidate in a biotechnological genus as Streptomyces. These results serve as basement to study other degradative actinobacteria and to improve the degradation processes of Streptomyces sp. M7.
Project description:This study aimed to investigate the variations in the protein composition of Streptomyces sp. PU10 when cultivated with either Impranil (polyestere-polyurethane) or glucose as the carbon source. We analyzed both the intracellular and extracellular protein fractions to gain insights into the intricate processes involving PU degradation, intermediate metabolic pathways in PU degradation, and the connection between primary and secondary metabolism within Streptomyces sp. PU10.
Project description:Streptomyces sp. MB42 produces antimicrobial compound under the pressence of specific compounds. This experiment is to see which gene cluster upregulated during the treatment of target compound.
Project description:This study is aimed to isolate marine actinomycetes from sediments from Andaman and the Gulf of Thailand. All 101 marine actinomycetes were screened for anti-biofilm activity. Streptomyces sp. GKU223 showed significantly inhibited biofilm formation of S. aureus. The evaluation of supernatants of anti-biofilm activity produced by Streptomyces sp. GKU223 has been performed. Since the interaction between marine actinomycetes and biofilm forming bacteria has never been investigated, proteomic analysis has been used to identify whole cell proteins involved in anti–biofilm activity. Understanding the interaction at molecular level will lead to sustainably use for anti-biofilm producing marine actinomycetes in pharmaceutical and medicinal applications in the future.
Project description:This study is aimed to isolate marine actinomycetes from sediments from Andaman and the Gulf of Thailand. All 101 marine actinomycetes were screened for anti-biofilm activity. Streptomyces sp. GKU 257-1 showed significantly inhibited biofilm formation of E. coli. The evaluation of supernatants of anti-biofilm activity produced by Streptomyces sp. GKU 257-1 has been performed. Since the interaction between marine actinomycetes and biofilm forming bacteria has never been investigated, proteomic analysis has been used to identify whole cell proteins involved in anti–biofilm activity. Understanding the interaction at molecular level will lead to sustainably use for anti-biofilm producing marine actinomycetes in pharmaceutical and medicinal applications in the future.
Project description:In the current study Streptomyces sp. MBT27, strain isolated from remote area of Qinling mountains, was fermented with different carbon sources and metabolomic analysis of secondary metabolites was carried out by MS and multivariate data analysis. The statistical analysis suggested that extracts with stronger antimicrobial activity against B. subtilis contained higher concentrations of actinomycins. Further analyses of the metabolic profiles by oPLS-DA and GNPS molecular networking resulted in the isolation of a novel actinomycin analog, actinomycin L1 and L2 and three known actinomycins D, X0beta and X2.
Project description:Data acquired by LC-MS in full scan mode (MS1) in a five point dilution series of methanolic extracts (methanol:water) for actinomycetes BRA006 (Micromonospora sp.), BRA010 (Streptomyces sp.) and BRA177 (Actinomadura sp.).