ABSTRACT: Exercise has been shown to improve health status and prevent the progression and development of numerous chronic diseases associated with chronic inflammation
Project description:Cardiac dysfunction often arises during the early stages of cancer cachexia, posing a significant complication of the disease. Physical fitness is commonly recommended in these early stages of cancer cachexia due to its beneficial impacts on various aspects of the condition, including cardiac dysfunction. However, the direct functional impacts of exercise on the heart during cancer cachexia largely remain unexplored. In this study, we induced cancer cachexia in mice using a metastatic B16F10 melanoma model. Concurrently, these mice underwent a physical exercise regimen to investigate its potential role in cardiac function during cachexia. Our findings indicate that exercise training can help prevent metastatic melanoma-induced muscle loss without significant alterations to body and fat weight. Moreover, exercise improved the melanoma-induced decline in ejection fraction and fractional shortening, while also mitigating the increase in high-sensitive cardiac troponin T levels caused by metastatic melanoma in mice. Transcriptome analysis revealed that exercise significantly reversed the transcriptional alterations in the heart induced by melanoma, which were primarily enriched in pathways related to heart contraction. These results suggest that exercise can improve systolic heart function and directly influence the transcriptome of the heart during metastatic melanoma-induced cachexia.
Project description:Skeletal muscle adapts to exercise training of various modes, intensities and durations with a programmed gene expression response. This study dissects the independent and combined effects of exercise mode, intensity and duration to identify which exercise has the most positive effects on skeletal muscle health. Full details on exercise groups can be found in: Kraus et al Med Sci Sports Exerc. 2001 Oct;33(10):1774-84 and Bateman et al Am J Cardiol. 2011 Sep 15;108(6):838-44.
Project description:Skeletal muscle adapts to exercise training of various modes, intensities and durations with a programmed gene expression response. This study dissects the independent and combined effects of exercise mode, intensity and duration to identify which exercise has the most positive effects on skeletal muscle health. Full details on exercise groups can be found in: Kraus et al Med Sci Sports Exerc. 2001 Oct;33(10):1774-84 and Bateman et al Am J Cardiol. 2011 Sep 15;108(6):838-44. This study uses a middle aged group of subjects that have 3+ markers of metabolic syndrome. One group remains an inactive control, while 5 groups undergo 9 mo supervised exercise training. Exercise groups are as follows: Inactive control (group B); Mild aerobic exercise - low amount/mod intensity (group A); Moderate aerobic exercise - low amt/vig intensity (group D); High aerobic exercise - high amt/vig intensity (group C); resistance training only (group F); and mod aerobic + resistance training (group E). Each group has 10 subjects (5 men and 5 women), however 3 subjects failed array QC, leaving 8 subjects in group E and 9 subjects in group F. Data were all analyzed pre to post training in a RM ANCOVA, covaried for age and sex or regression to determine genotype/phenotype interactions.
Project description:Exercise is a fundamental component of human health that is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of endurance exercise on human health are well established, the molecular mechanisms responsible for these observations remain unclear. Endurance exercise reduces the accumulation of mitochondrial DNA (mtDNA) mutations, alleviates multisystem pathology, and increases the lifespan of the mtDNA mutator mouse model of aging, in which the proof-reading capacity of mitochondrial polymerase gamma (POLG1) is deficient. Clearly, exercise recruited a POLG1-independent mtDNA repair pathway to induce these adaptations, a novel finding as POLG1 is canonically considered to be the sole mtDNA repair enzyme. Here we investigate the identity of this pathway, and show that endurance exercise prevents mitochondrial oxidative damage, attenuates telomere erosion, and mitigates cellular senescence and apoptosis in mtDNA mutator mice. Unexpectedly, we observe translocation of tumour suppressor protein p53 to mitochondria in response to endurance exercise that facilitates mtDNA mutation repair. Indeed, endurance exercise failed to prevent mtDNA mutations, induce mitochondrial biogenesis, preserve mitochondrial morphology, reverse sarcopenia, and mitigate premature mortality in mtDNA mutator mice with muscle-specific deletion of p53. Our data establish an exciting new role for p53 in exercise-mediated maintenance of the mtDNA genome, and presents mitochondrially-targeted p53 as a novel therapeutic modality for aging-associated diseases of mitochondrial etiology. Microarray analysis of gene expression from skeletal muscle (quadriceps femoris) from Mus musculus. N=23 samples per treatment were analysed for whole transcriptiome gene expression profile using NimbleGen Arrays. The treatment groups included wild-type C57Bl/6J mice as the control group, then two treatment groups which both contained homozygous knock-in mtDNA mutator mice (PolG; PolgAD257A/D257A). Once group of these heterozygous knock out mice received regular endurance exercise sessions while the other group remained sedentraty for 6 months. The control group specimens were wild-type litter mates to the transgenic knockout mice.
Project description:Exercise is a fundamental component of human health that is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of endurance exercise on human health are well established, the molecular mechanisms responsible for these observations remain unclear. Endurance exercise reduces the accumulation of mitochondrial DNA (mtDNA) mutations, alleviates multisystem pathology, and increases the lifespan of the mtDNA mutator mouse model of aging, in which the proof-reading capacity of mitochondrial polymerase gamma (POLG1) is deficient. Clearly, exercise recruited a POLG1-independent mtDNA repair pathway to induce these adaptations, a novel finding as POLG1 is canonically considered to be the sole mtDNA repair enzyme. Here we investigate the identity of this pathway, and show that endurance exercise prevents mitochondrial oxidative damage, attenuates telomere erosion, and mitigates cellular senescence and apoptosis in mtDNA mutator mice. Unexpectedly, we observe translocation of tumour suppressor protein p53 to mitochondria in response to endurance exercise that facilitates mtDNA mutation repair. Indeed, endurance exercise failed to prevent mtDNA mutations, induce mitochondrial biogenesis, preserve mitochondrial morphology, reverse sarcopenia, and mitigate premature mortality in mtDNA mutator mice with muscle-specific deletion of p53. Our data establish an exciting new role for p53 in exercise-mediated maintenance of the mtDNA genome, and presents mitochondrially-targeted p53 as a novel therapeutic modality for aging-associated diseases of mitochondrial etiology.
Project description:While moderate endurance exercise has been reported to improve cardiovascular health , its effects on cardiac structure and function are not fully characterized, especially with respect to sex dimorphism. We aimed to assess the effects of moderate endurance exercise on cardiac physiology in male versus female mice.
Project description:Physical exercise seems universally beneficial to human and animal health, slowing cognitive aging and neurodegeneration. Cognitive benefits are tied to increased plasticity and reduced inflammation within the hippocampus, yet little is known about the factors and mechanisms mediating these effects. We discovered “runner” plasma, collected from voluntarily running mice, infused into sedentary mice recapitulates the cellular and functional benefits of exercise on the adult brain. Importantly, runner plasma reduces baseline neuroinflammatory gene expression and experimentally induced brain inflammation. Plasma proteomic analysis revealed a striking increase in complement cascade inhibitors including clusterin (CLU), which is facilitating the anti-inflammatory effects of runner plasma. Intravenously injected CLU strongly binds to brain endothelial cells reducing their inflammatory gene expression in an acute model of brain inflammation and in Alzheimer’s disease model mice. Cognitively impaired patients participating in structured exercise for 6 months showed improved cognition and higher plasma clusterin levels. These findings demonstrate the existence of anti-inflammatory “exercise factors” that are transferrable, target the cerebrovasculature and benefit the brain, and are present in humans engaging in exercise.
Project description:Physical exercise seems universally beneficial to human and animal health, slowing cognitive aging and neurodegeneration. Cognitive benefits are tied to increased plasticity and reduced inflammation within the hippocampus, yet little is known about the factors and mechanisms mediating these effects. We discovered that “runner” plasma, collected from voluntarily running mice and infused into sedentary mice, reduces baseline neuroinflammatory gene expression and experimentally induced brain inflammation. Plasma proteomic analysis revealed a concerted increase in complement cascade inhibitors including clusterin (CLU), a central protein for the anti-inflammatory effects of runner plasma. Intravenously injected CLU strongly binds to brain endothelial cells reducing their inflammatory gene expression in an acute model of brain inflammation and in an Alzheimer’s disease mouse model. Cognitively impaired patients participating in structured exercise for 6 months had higher plasma clusterin levels. These findings demonstrate the existence of anti-inflammatory “exercise factors” that are transferrable, target the cerebrovasculature and benefit the brain, and are present in humans engaging in exercise.
Project description:Purpose: Using RNA-sequencing technology to screen the effect of moderate-intensity treadmill exercise on the key genes that affect bone mass in the peripheral blood mononuclear cells (PBMCs) of ovariectomized (OVX) rats. Methods: Three-month-old female Sprague–Dawley rats of Specific Pathogen Free (SPF) grade were randomly divided into the sham operation (SHAM) group, OVX group, and OVX combined exercise (OVX+EX) group. The OVX+EX group performed moderate-intensity treadmill exercise for 17 weeks. Upon completion of these exercises, the body composition and bone mineral density (BMD) were measured using dual-energy X-ray absorptiometry, and the bone microstructure of the femur was observed using micro-computed tomography scanning. PBMCs were collected from the abdominal aorta, and the differential genes were analyzed by transcriptome sequencing. The Metascape software was used for gene ontology and pathway enrichment analysis to further screen key genes. Results: 1. In the OVX group, the body weight and body fat content were significantly higher than in the SHAM group and the body muscle content and BMD were significantly lower. 2. The trabecular bone parameters in the OVX group were significantly lower than in the SHAM group, and they were significantly higher in the OVX+EX group than in the OVX group. When compared with the SHAM group, the microstructure of the distal femur trabecular in the OVX group was severely damaged, the trabecular bones were sparse, and there was a large gap between the trabecular bones. The number and continuity of the trabecular bones were higher in OVX+EX group than in the OVX group. 3. A Venn diagram showed that there were 58 common differential genes, with a fold change ≥2 and p value <0.05. and the differential genes were mainly enriched in the PI3K-Akt signaling pathway. Five key genes were screened including CCL2, Nos3, Tgfb3, ITGb4, and LpL. Conclusion: Moderate-intensity treadmill exercise may improve the body composition and bone mass of the OVX group by upregulating CCL2 and other genes of the PBMC. The results also showed that the PBMCs in the peripheral blood can be a useful tool for monitoring the effect of exercise on bone health in postmenopausal osteoporosis.
Project description:Low aerobic exercise capacity is a risk factor for diabetes and strong predictor of mortality; yet some individuals are exercise resistant, and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease-risk, we used selective breeding for 15 generation to develop rat models of low- and high-aerobic response to training. Before exercise training, rats selected as low- and high-responders had similar exercise capacities. However, after 8-wks of treadmill training low-responders failed to improve their exercise capacity, while high-responders improved by 54%. Remarkably, low-responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise resistant phenotype segregates with disease risk. Low-responders had impaired exercise-induced angiogenes0is in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low-responders. Low-responders had increased stress/inflammatory signaling and altered TGFM-NM-2 signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. Cardiac and skeletal muscle from 3 high and 3 low responder rats were examined for differential miRNA expression using Exiqon microarrays