Project description:Guanidine DNA quadruplex (G4-DNA) structures convey a distinctive layer of epigenetic information that is critical for the regulation of key biological activities and processes as genome transcription regulation, replication and repair. Despite several works that have been published recently, the information regarding their role and possible use as therapeutic drug targets in bacteria is still scarce. Here, we tested the biological activity of a small G4-DNA ligand library based on the naphthalene diimide (NDI) pharmacophore, against both Gram-positive and Gram-negative bacteria. For the best compound identified, NDI-10, the action mechanism was further characterized. Gram-negative bacteria were more resistant altogether due to the presence of the outer membrane, although the activity of the G4-Ligand was generally bactericidal, while it was bacteriostatic for Gram-positive bacteria. This asymmetric activity could be related to the different prevalence of putative G4-DNA structures in each group, the influence that they can exert on the gene expression (which was found more severe for the Gram-negative bacteria) and the role of the G4 structures in these bacteria, that seems to be more related to promote transcription in Gram-positive bacteria and repress transcription in Gram-negative.
Project description:A CHG microarray for detection and identification of bacteria and viruses pathogenic on maize Two-condition experiment, Agilent SurePrint G3 Cust. CGH Microarray 4x180K
Project description:Antibiotic-resistant “super-bug” bacteria represent a global health problem with no imminent solutions. Here, we demonstrate that AB569 (acidified nitrite (A-NO2-) and Na2-EDTA) killed all Gram-negative and Gram-positive bacteria tested. AB569 was also efficacious at killing the model organism P. aeruginosa in biofilms and in a murine chronic lung infection model. AB569 was not toxic to human cell lines at bactericidal concentrations. RNA-Seq analyses upon treatment of P. aeruginosa with AB569 revealed a catastrophic loss of the ability to support core pathways encompassing DNA, RNA, protein, ATP biosynthesis, and iron metabolism. Electrochemical analyses elucidated that AB569 produced more stable SNO-proteins, potentially explaining one mechanism of bacterial killing. Our data implicate that AB569 is a safe and effective means to kill pathogenic bacteria, suggesting that simple strategies could be applied with highly advantageous therapeutic/toxicity index ratios to pathogens associated with a myriad of peri-epithelial infections and related disease scenarios.
Project description:Leaves are colonised by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognised as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray-inoculated with diverse leaf-colonising bacteria. Whole transcriptome sequencing revealed that four days after inoculation, leaf transcriptional changes to colonisation by non-pathogenic and pathogenic bacteria differed in strength but not in the type of response.
Project description:The aim of this experiment was to determine if the development of resistance to antibiotics can be driven by the concentration and speciation of Cu. Experimental setup was designed to investigate two hypotheses for which two strains of Gram- bacteria have been selected: - Do TE enhance AR in resistant bacteria? Resistant strain: Bioluminescent Pseudomonas aeruginosa PAO1 (Xen41, Tetracycline resistant) - Do TE induce AR in sensitive bacteria? Sensitive strain: Pseudomonas aeruginosa PAO1 (Wild Type)
Project description:The aim of this experiment was to determine if the development of resistance to antibiotics can be driven by the concentration and speciation of Cu. Experimental setup was designed to investigate two hypotheses for which two strains of Gram- bacteria have been selected: - Do TE enhance AR in resistant bacteria? Resistant strain: Bioluminescent Pseudomonas aeruginosa PAO1 (Xen41, Tetracycline resistant) - Do TE induce AR in sensitive bacteria? Sensitive strain: Pseudomonas aeruginosa PAO1 (Wild Type)