Project description:To investigate gene expression differences of different tylosin high-producing strains, transcriptomes of three tylosin high-producing engineered strains (TLPH08-2, TLPH11 and TLPH17) and the vector control strain TLSET152 were analyzed by RNA-Seq. Different strains (TLSET152, TLPH08-2, TLPH11 and TLPH17) were harvested at 96 h of fermentationat and then RNA isolation, transcriptome sequencing and data analysis were conducted.
Project description:Abstract: Transcript levels in production cultures of wildtype and classically improved strains of the actinomycete bacteria Saccharopolyspora erythraea and Streptomyces fradiae were monitored using microarrays of the sequenced actinomycete S. coelicolor. Sac. erythraea and S. fradiae synthesize the polyketide antibiotics erythromycin and tylosin, respectively, and the classically improved strains contain unknown overproduction mutations. The Sac. erythraea overproducer was found to express the entire 56-kb erythromycin gene cluster several days longer than the wildtype strain. In contrast, the S. fradiae wildtype and overproducer strains expressed the 85-kb tylosin biosynthetic gene cluster similarly, while they expressed several tens of other S. fradiae genes and S. coelicolor homologs differently, including the acyl-CoA dehydrogenase gene aco and the S. coelicolor isobutyryl-CoA mutase homolog icmA. These observations indicated that overproduction mechanisms in classically improved strains can affect both the timing and rate of antibiotic synthesis, and alter the regulation of antibiotic biosynthetic enzymes and enzymes involved in precursor metabolism. This SuperSeries is composed of the SubSeries listed below.
Project description:Strains: non-producing refernece strain pXMJ19 (CR099 pXMJ19; Goldbeck et al., 2021) and Pediocin-producer pxMJ19 ped (CR099 pXMJ19 Ptac pedACDCg, Goldbeck et al., 2021) Pediocin-producing and non-producing strains of Corynebacterium glutamicum were compared in a whole genome microarray analysis setup in order to identify potential strain optimization targets
Project description:Lipopeptide biosurfactant producing Bacillus strains have many useful applications in biotechnology and agriculture, based on their emulsifying, surface activity and antimicrobial properties. In the current study, lipopeptide production kinetics, and biocontrol potentials of two new B. velezensis strains, ES1-02 and EFSO2-04 were analyzed and compared with those of commercial strains QST713 and FZB42. ES1-02 and EFSO2-04 showed higher specific growth rates than FZB42, but lower growth rates than QST713. All strains produced surfactin lipopetides, while fengycin production was not observed in ES1-02 and EFSO2-04. Production of fengycin A, B, X and Y were however confirmed in strains QST713 and FZB42. Significant differences were observed in the production of lipopeptides of the iturin family. While ES1-02 and EFSO2-04 produced bacillomycin L, QST713 produced iturin A, and FZB42 produced bacillomycin D. This was in line with the PCR analysis of corresponding genes encoding the identified lipopeptides. Highest surfactin titer of 97.4 mg/L was observed in ES1-02, while QST713 produced highest amount of iturin/bacillomycin (8.5 mg/L). Surfactin isoforms C12 to C17, and iturin/bacillomycin isoforms C11 to C17 were identified by mass spectrometry. ES1-02 and EFSO2-04 showed biocontrol potentials comparable with that of QST713 against Diaporthe spp., while FZB42 showed superior antifungal potentials. Up to 41%, 43%, 47 % and 68.9 % inhibition of D. caulivora were achieved by ES1-02, EFSO2-04, QST713 and FZB42 respectively. Upon exposure to B. velezensis strains, morphological changes to Diaporthe hyphae in form of swellings, distortion, and complete disruption occurred. Interaction of D. longicolla DPC_HOH20 with ES1-02 and EFSO2-04 induced 10-fold and 5-fold increase in surfactin synthesis, respectively. Antagonist interaction with D. longicolla induced significant changes in the proteome of ES1-02 including an increased abundance of several proteins associated with biosynthesis of antimicrobial compounds and fatty acids, while proteins associated with phosphate uptake were decreased in abundance.
Project description:To detect the true expression patterns of diosgenin (DSG) synthetic genes after pathway engineering as well as investigate the impact of the DSG accumulation on the physiological state of yeast cells, a global analysis of the transcriptomes of DSG producing strains was performed using mRNA sequencing (RNA-Seq). DSG producing strains include LP085-Vc (DSG titer of 8.0 mg/L), LP104-17 (24.6 mg/L), and LP118 (31.4mg/L) were grown in SD media (2% w/v glucose) and cell samples of the 6h and 24h fermentation time points were collected for transcriptome analyses.
Project description:We focused on whether transposon mutagenesis in Brucella abortus could induce difference in the trascriptional responses of RAW 264.7 cell infection model compared to the wild strain infected RAW 264.7 cells. The function of genes in Brucella abortus was analyzed through the identified differences in gene expression between RAW 264.7 cell infected with wild and mutant strains.
Project description:In this work we compare the protein expression patterns of the three strains in response to arsenic by proteomic approach, strains were grown in absence of the metalloid and in presence of As(III) and As(V) sublethal concentrations and the protein separation was carried out in 2D electrophoresis gels (2D-GE). In total, 999 spots were detected, between 77 and 173 of which showed significant changes for As(III) among the three strains, and between 90 and 143 for As(V) respectively compared to the corresponding control condition. Twenty-eight of those were identified by mass spectrometry (MS).
Project description:This goal of these experiments is to assess steady-state transcript levels in a set of E. coli mutants (ppk, dgk, zwf, entC, and dapF null strains) that grow slowly in M9 glucose, and to compare these transcript levels to corresponding synthetic rescue strains (i.e. spontaneous suppressor strains in which slow growth is rescued to wild-type levels).