Project description:Mammalian feces can be collected non-invasively during field research and provides valuable information on the ecology and evolution of the host individuals. Undigested food objects, genome/metagenome, steroid hormones, and stable isotopes obtained from fecal samples provide evidence on diet, host/symbiont genetics, and physiological status of the individuals. However, proteins in mammalian feces have hardly been studied, which hampers the molecular investigations into the behavior and physiology of the host individuals. Here, we apply mass spectrometry-based proteomics to fecal samples (n = 10) that were collected from infant, juvenile, and adult captive Japanese macaques (Macaca fuscata) to describe the proteomes of the host, food, and intestinal microbes. The results show that fecal proteomics is a useful method to investigate dietary changes along with breastfeeding and weaning, to reveal the organ/tissue and taxonomy of dietary items, and to estimate physiological status inside intestinal tracts. These types of insights are difficult or impossible to obtain through other molecular approaches. Most mammalian species are facing extinction risk and there is an urgent need to obtain knowledge on their ecology and evolution for better conservation strategy. The fecal proteomics framework we present here is easily applicable to wild settings and other mammalian species, and provides direct evidence of their behavior and physiology.
Project description:A subset of post-infection irritable bowel syndrome (PI-IBS) patients have elevated, or high fecal proteolytic activity (PA). Fecal PA has been shown to correlate with increased symptom severity as well as lower quality of life scores, increased fecal output and increased intestinal permeability. To address the underlying mechanisms of barrier disruption as a consequence of high fecal PA, colonic biopsies were collected from healthy individuals PI-IBS patients (n=11). Individuals diagnosed with PI-IBS were further divided in to 2 subgroups, high PA and low PA as defined by the PA in matched fecal samples. RNA was extracted from the biopsies for bulk RNA sequencing to understand transcriptional differences between healthy and high PA PI-IBS patients as well as high PA and Low PA PI-IBS patients.
Project description:LC-MS/MS metabolomes of fecal samples from 101 individuals from 25 mammalian species, in collaboration with a zoo. DDA data for molecular networking. Collected on a qExactive and includes fecal samples, dietary samples, and quality control samples. See linked datasets: MSV000083859, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA693262/
Project description:Daily quantitative microbiome profiling on 713 fecal samples from 20 Belgian women over six weeks, combined with extensive anthropometric measurements, blood panels, dietary data, and stool characteristics.