Project description:BackgroundMacrophages are innate immune cells with diverse functional and molecular phenotypes. This diversity is largely unexplored at the level of single-cell proteomes because of the limitations of quantitative single-cell protein analysis.ResultsTo overcome this limitation, we develop SCoPE2, which substantially increases quantitative accuracy and throughput while lowering cost and hands-on time by introducing automated and miniaturized sample preparation. These advances enable us to analyze the emergence of cellular heterogeneity as homogeneous monocytes differentiate into macrophage-like cells in the absence of polarizing cytokines. SCoPE2 quantifies over 3042 proteins in 1490 single monocytes and macrophages in 10 days of instrument time, and the quantified proteins allow us to discern single cells by cell type. Furthermore, the data uncover a continuous gradient of proteome states for the macrophages, suggesting that macrophage heterogeneity may emerge in the absence of polarizing cytokines. Parallel measurements of transcripts by 10× Genomics suggest that our measurements sample 20-fold more protein copies than RNA copies per gene, and thus, SCoPE2 supports quantification with improved count statistics. This allowed exploring regulatory interactions, such as interactions between the tumor suppressor p53, its transcript, and the transcripts of genes regulated by p53.ConclusionsEven in a homogeneous environment, macrophage proteomes are heterogeneous. This heterogeneity correlates to the inflammatory axis of classically and alternatively activated macrophages. Our methodology lays the foundation for automated and quantitative single-cell analysis of proteins by mass spectrometry and demonstrates the potential for inferring transcriptional and post-transcriptional regulation from variability across single cells.
Project description:The fate and physiology of individual cells are controlled by proteins. Yet, our ability to quantitatively analyze proteins in single cells has remained limited. To overcome this barrier, we developed SCoPE2. It substantially increases quantitative accuracy and throughput while lowering cost and hands-on time by introducing automated and miniaturized sample preparation. These advances enabled us to analyze the emergence of cellular heterogeneity as homogeneous monocytes differentiated into macrophage-like cells in the absence of polarizing cytokines. SCoPE2 quantified over 3,042 proteins in 1,490 single monocytes and macrophages in ten days of instrument time, and the quantified proteins allowed us to discern single cells by cell type. Furthermore, the data uncovered a continuous gradient of proteome states for the macrophage-like cells, suggesting that macrophage heterogeneity may emerge even in the absence of polarizing cytokines. Parallel measurements of transcripts by 10x Genomics scRNA-seq suggest that our measurements sampled 20-fold more protein copies than RNA copies per gene, and thus SCoPE2 supports quantification with improved count statistics. Joint analysis of the data illustrates how variability across single cells can reveal transcriptional and post-transcriptional gene regulation. Our methodology lays the foundation for automated and quantitative single-cell analysis of proteins by mass-spectrometry.
Project description:Many biological systems are composed of diverse single cells. This diversity necessitates functional and molecular single-cell analysis. Single-cell protein analysis has long relied on affinity reagents, but emerging mass-spectrometry methods (either label-free or multiplexed) have enabled quantifying >1,000 proteins per cell while simultaneously increasing the specificity of protein quantification. Here we describe the Single Cell ProtEomics (SCoPE2) protocol, which uses an isobaric carrier to enhance peptide sequence identification. Single cells are isolated by FACS or CellenONE into multiwell plates and lysed by Minimal ProteOmic sample Preparation (mPOP), and their peptides labeled by isobaric mass tags (TMT or TMTpro) for multiplexed analysis. SCoPE2 affords a cost-effective single-cell protein quantification that can be fully automated using widely available equipment and scaled to thousands of single cells. SCoPE2 uses inexpensive reagents and is applicable to any sample that can be processed to a single-cell suspension. The SCoPE2 workflow allows analyzing ~200 single cells per 24 h using only standard commercial equipment. We emphasize experimental steps and benchmarks required for achieving quantitative protein analysis.
Project description:Single cell proteomic dataset (~420 cells passing filter, 1827 proteins at 1% FDR and 4096 proteins post update via DART-ID) characterizing the Epithelial to Mesenchymal transition induced by TGF-B in MCF10A cells.
Cells were sampled from day 0 (epithelial), day 3 (intermediate) and day 9 (sustained) treatment. The single cell samples were prepped using nPoP and prepared in the SCoPE2 format. Dataset also includes two bulk biological replicates (samples from day 0, 3 and 9 respectively) that were analyzed via label free DIA.
Project description:Analysis by liquid chromatography and tandem mass spectrometry (LC-MS/MS) can identify and quantify thousands of proteins in microgram-level samples, such as those comprised of thousands of cells. Identifying proteins by LC-MS/MS proteomics, however, remains challenging for lowly abundant samples, such as the proteomes of single mammalian cells. To increase the identification rate of peptides in such small samples, we developed DART-ID. This method implements a data-driven, global retention time (RT) alignment process to infer peptide RTs across experiments. DART-ID then incorporates the global RT-estimates within a principled Bayesian framework to increase the confidence in correct peptide-spectrum-matches. Applying DART-ID to hundreds of samples prepared by the Single Cell Proteomics by Mass Spectrometry (SCoPE-MS) design increased the peptide and proteome coverage by 30 - 50% at 1% FDR. The newly identified peptides and proteins were further validated by demonstrating that their quantification is consistent with the quantification of peptides identified from high-quality spectra. DART-ID can be applied to various sets of experimental designs with similar sample complexities and chromatography conditions, and is freely available online.
Project description:Single H358 cells analyzed using SCOPE2 on a TIMSTOF Flex mass spectrometer. Bruker .d folders, MGFs, Proteome Discoverer 2.5 and MaxQuant 1.6.17 results are uploaded.
Project description:Some exciting biological questions require quantifying thousands of proteins in single cells. To achieve this goal, we develop Single Cell ProtEomics by Mass Spectrometry (SCoPE-MS) and validate its ability to identify distinct human cancer cell types based on their proteomes. We use SCoPE-MS to quantify over a thousand proteins in differentiating mouse embryonic stem cells. The single-cell proteomes enable us to deconstruct cell populations and infer protein abundance relationships. Comparison between single-cell proteomes and transcriptomes indicates coordinated mRNA and protein covariation, yet many genes exhibit functionally concerted and distinct regulatory patterns at the mRNA and the protein level.