Project description:We evaluated the effects of suppressing MAP4K4 on transcriptome and YAP1 pathway based on the observation that partial suppression of MAP4K4 leads to transformation through activation of YAP1. Mutations and deletions involving subunits of the serine-threonine phosphatase PP2A occur in a broad range of human cancers, and partial loss of PP2A function contributes to cell transformation. In particular, displacement of regulatory B subunits by the viral oncoprotein SV40 small-t antigen (ST) or mutation or deletion of PP2A subunits alters the abundance and types of PP2A complexes in cells and induces cell transformation in human cells. Here we show that ST not only displaces common PP2A B subunits but also promotes PP2A A-C subunit interactions with a set of alternative B subunits (B’’’, striatins) that are components of the Striatin-interacting phosphatase and kinase (STRIPAK) complex. We found that members of the STRIPAK complex are required for ST-PP2A induced cell transformation. PP2A interacts with and dephosphorylates the STRIPAK-associated kinase MAP4K4, which induces cell transformation in part through the regulation of the Hippo pathway effector YAP1. These observations identify an unanticipated role of MAP4K4 in transformation and show that the STRIPAK complex plays a key role in defining PP2A specificity and activity.
Project description:Alterations involving serine-threonine phosphatase PP2A subunits occur in a range of human cancers, and partial loss of PP2A function contributes to cell transformation. Displacement of regulatory B subunits by the SV40 Small T antigen (ST) or mutation/deletion of PP2A subunits alters the abundance and types of PP2A complexes in cells, leading to transformation. Here, we show that ST not only displaces common PP2A B subunits but also promotes A-C subunit interactions with alternative B subunits (B''', striatins) that are components of the Striatin-interacting phosphatase and kinase (STRIPAK) complex. We found that STRN4, a member of STRIPAK, is associated with ST and is required for ST-PP2A-induced cell transformation. ST recruitment of STRIPAK facilitates PP2A-mediated dephosphorylation of MAP4K4 and induces cell transformation through the activation of the Hippo pathway effector YAP1. These observations identify an unanticipated role of MAP4K4 in transformation and show that the STRIPAK complex regulates PP2A specificity and activity.
Project description:RAS-mediated human cell transformation requires inhibition of the tumor suppressor Protein Phosphatase 2A (PP2A). Both RAS and PP2A mediate their effects by phosphoregulation, but phosphoprotein targets and cellular processes in which RAS and PP2A activities converge in human cancers have not been systematically analyzed. Here, based on mass spectrometry phosphoproteome data we discover that phosphosites co-regulated by RAS and PP2A are enriched on proteins involved in epigenetic gene regulation. As examples, RAS and PP2A co-regulate the same phosphorylation sites on HDAC1/2, KDM1A, MTA1/2, RNF168 and TP53BP1. Mechanistically, we validate co-regulation of NuRD chromatin repressor complex by RAS and PP2A. Consistent with their known synergistic effects in cancer, RAS activation and PP2A inhibition resulted in epigenetic reporter de-repression and activation of oncogenic transcription. Notably, transcriptional de-repression by PP2A inhibition was associated with increased euchromatin and decrease in global DNA methylation. Further, targeting of RAS- and PP2A-regulated epigenetic proteins decreased viability of KRAS-mutant human lung cancer cells. Collectively the results indicate that epigenetic protein complexes involved in oncogenic gene expression constitute a significant point of convergence for RAS hyperactivity and PP2A inhibition in cancer. Further, this work provides a resource for future studies focusing on phosphoregulation as a previously unappreciated layer of regulation of epigenetic gene regulation in cancer, and in other RAS/PP2A-regulated cellular processes.
Project description:RAS-mediated human cell transformation requires inhibition of the tumor suppressor Protein Phosphatase 2A (PP2A). Both RAS and PP2A mediate their effects by phosphoregulation, but phosphoprotein targets and cellular processes in which RAS and PP2A activities converge in human cancers have not been systematically analyzed. Here, based on mass spectrometry phosphoproteome data we discover that phosphosites co-regulated by RAS and PP2A are enriched on proteins involved in epigenetic gene regulation. As examples, RAS and PP2A co-regulate the same phosphorylation sites on HDAC1/2, KDM1A, MTA1/2, RNF168 and TP53BP1. Mechanistically, we validate co-regulation of NuRD chromatin repressor complex by RAS and PP2A. Consistent with their known synergistic effects in cancer, RAS activation and PP2A inhibition resulted in epigenetic reporter de-repression and activation of oncogenic transcription. Notably, transcriptional de-repression by PP2A inhibition was associated with increased euchromatin and decrease in global DNA methylation. Further, targeting of RAS- and PP2A-regulated epigenetic proteins decreased viability of KRAS-mutant human lung cancer cells. Collectively the results indicate that epigenetic protein complexes involved in oncogenic gene expression constitute a significant point of convergence for RAS hyperactivity and PP2A inhibition in cancer. Further, this work provides a resource for future studies focusing on phosphoregulation as a previously unappreciated layer of regulation of epigenetic gene regulation in cancer, and in other RAS/PP2A-regulated cellular processes.
Project description:RAS-mediated human cell transformation requires inhibition of the tumor suppressor Protein Phosphatase 2A (PP2A). Both RAS and PP2A mediate their effects by phosphoregulation, but phosphoprotein targets and cellular processes in which RAS and PP2A activities converge in human cancers have not been systematically analyzed. Here, based on mass spectrometry phosphoproteome data we discover that phosphosites co-regulated by RAS and PP2A are enriched on proteins involved in epigenetic gene regulation. As examples, RAS and PP2A co-regulate the same phosphorylation sites on HDAC1/2, KDM1A, MTA1/2, RNF168 and TP53BP1. Mechanistically, we validate co-regulation of NuRD chromatin repressor complex by RAS and PP2A. Consistent with their known synergistic effects in cancer, RAS activation and PP2A inhibition resulted in epigenetic reporter de-repression and activation of oncogenic transcription. Notably, transcriptional de-repression by PP2A inhibition was associated with increased euchromatin and decrease in global DNA methylation. Further, targeting of RAS- and PP2A-regulated epigenetic proteins decreased viability of KRAS-mutant human lung cancer cells. Collectively the results indicate that epigenetic protein complexes involved in oncogenic gene expression constitute a significant point of convergence for RAS hyperactivity and PP2A inhibition in cancer. Further, this work provides a resource for future studies focusing on phosphoregulation as a previously unappreciated layer of regulation of epigenetic gene regulation in cancer, and in other RAS/PP2A-regulated cellular processes.
Project description:Data supporting the manuscript: A methyltransferase-independent role for METTL1 in tRNA aminoacylation and oncogenic transformation
Project description:Identification of differential enhancers active during oncogenic transformation, using FAIRE-seq and ChIP-seq for H3K4me1 and H3K27ac