Project description:Bile acids, which are synthesized from cholesterol by the liver, are chemically transformed along the intestinal tract by the gut microbiota, and the products of these transformations signal through host receptors, affecting overall host health. These transformations include bile acid deconjugation, oxidation, and 7α-dehydroxylation. An understanding of the biogeography of bile acid transformations in the gut is critical because deconjugation is a prerequisite for 7α-dehydroxylation and because most gut microorganisms harbor bile acid transformation capacity. Here, we used a coupled metabolomic and metaproteomic approach to probe in vivo activity of the gut microbial community in a gnotobiotic mouse model. Results revealed the involvement of Clostridium scindens in 7α-dehydroxylation, of the genera Muribaculum and Bacteroides in deconjugation, and of six additional organisms in oxidation (the genera Clostridium, Muribaculum, Bacteroides, Bifidobacterium, Acutalibacter, and Akkermansia). Furthermore, the bile acid profile in mice with a more complex microbiota, a dysbiosed microbiota, or no microbiota was considered. For instance, conventional mice harbor a large diversity of bile acids, but treatment with an antibiotic such as clindamycin results in the complete inhibition of 7α-dehydroxylation, underscoring the strong inhibition of organisms that are capable of carrying out this process by this compound. Finally, a comparison of the hepatic bile acid pool size as a function of microbiota revealed that a reduced microbiota affects host signaling but not necessarily bile acid synthesis. In this study, bile acid transformations were mapped to the associated active microorganisms, offering a systematic characterization of the relationship between microbiota and bile acid composition.
Project description:Bile acids are detergent molecules that solubilize dietary lipids and lipid-soluble vitamins. Humans synthesize bile acids with α-orientation hydroxyl groups which can be biotransformed by gut microbiota to toxic, hydrophobic bile acids, such as deoxycholic acid (DCA). Gut microbiota can also convert hydroxyl groups from the α-orientation through an oxo-intermediate to the β-orientation, resulting in more hydrophilic, less toxic bile acids. This interconversion is catalyzed by regio- (C-3 vs. C-7) and stereospecific (α vs. β) hydroxysteroid dehydrogenases (HSDHs). So far, genes encoding the urso- (7α-HSDH & 7β-HSDH) and iso- (3α-HSDH & 3β-HSDH) bile acid pathways have been described. Recently, multiple human gut clostridia were reported to encode 12α-HSDH, which interconverts DCA and 12-oxolithocholic acid (12-oxoLCA). 12β-HSDH completes the epi-bile acid pathway by converting 12-oxoLCA to the 12β-bile acid denoted epiDCA; however, a gene(s) encoding this enzyme has yet to be identified. We confirmed 12β-HSDH activity in cultures of Clostridium paraputrificum ATCC 25780. From six candidate C. paraputrificum ATCC 25780 oxidoreductase genes, we discovered the first gene (DR024_RS09610) encoding bile acid 12β-HSDH. Phylogenetic analysis revealed unforeseen diversity for 12β-HSDH, leading to validation of two additional bile acid 12β-HSDHs through a synthetic biology approach. By comparison to a previous phylogenetic analysis of 12α-HSDH, we identified the first potential C-12 epimerizing strains: Collinsella tanakaei YIT 12063 and Collinsella stercoris DSM 13279. A Hidden Markov Model search against human gut metagenomes located putative 12β-HSDH genes in about 30% of subjects within the cohorts analyzed, indicating this gene is relevant in the human gut microbiome.
Project description:Disorders of bile acids (BAs) are closely related to the development of liver and intestinal diseases, including acute pancreatitis (AP). However, the mechanism underlying the involvement of BAs in AP development remains unclear. We used intraperitoneal injection of cerulein to construct AP mouse models. These mice had significantly reduced tauroursodeoxycholic acid (TUDCA) and an imbalance of intestinal microbiota, based on 16S rDNA gene sequencing. To explore the role of AP-induced intestinal microbiota changes in the development of AP, we transplanted the stool obtained from AP mice to antibiotic-treated, microbiota-depleted healthy mice. Microbiota-depleted mice presented injury to the intestinal barrier function and pancreas. Additionally, microbiota depletion reduced AP-associated pancreatic injury. This indicated that the gut microbiota may worsen AP. As TUDCA was deficient in AP mice, we gavaged AP mice with it, and evaluated subsequent expression changes in the bile acid signaling receptors farnesoid-x-receptor (FXR) and its target gene fibroblast growth factor (FGF) 15. These were downregulated, and pancreatic and intestinal barrier function injury were mitigated. The gut microbiota is known to regulate bile acid production and signaling, and our analysis of changes to the gut microbiota in AP indicated that Lactobacilli may be the key contributors of TUDCA. Taken together, our study shows that supplementation with BAs could reduce pancreatic and intestinal injury, and that this effect may be associated with the gut microbiota.
Project description:We elucidate the detailed effects of gut microbial depletion on the bile acid sub-metabolome of multiple body compartments (liver, kidney, heart, and blood plasma) in rats. We use a targeted ultra-performance liquid chromatography with time of flight mass-spectrometry assay to characterize the differential primary and secondary bile acid profiles in each tissue and show a major increase in the proportion of taurine-conjugated bile acids in germ-free (GF) and antibiotic (streptomycin/penicillin)-treated rats. Although conjugated bile acids dominate the hepatic profile (97.0 ± 1.5%) of conventional animals, unconjugated bile acids comprise the largest proportion of the total measured bile acid profile in kidney (60.0 ± 10.4%) and heart (53.0 ± 18.5%) tissues. In contrast, in the GF animal, taurine-conjugated bile acids (especially taurocholic acid and tauro-?-muricholic acid) dominated the bile acid profiles (liver: 96.0 ± 14.5%; kidney: 96 ± 1%; heart: 93 ± 1%; plasma: 93.0 ± 2.3%), with unconjugated and glycine-conjugated species representing a small proportion of the profile. Higher free taurine levels were found in GF livers compared with the conventional liver (5.1-fold; P < 0.001). Bile acid diversity was also lower in GF and antibiotic-treated tissues compared with conventional animals. Because bile acids perform important signaling functions, it is clear that these chemical communication networks are strongly influenced by microbial activities or modulation, as evidenced by farnesoid X receptor-regulated pathway transcripts. The presence of specific microbial bile acid co-metabolite patterns in peripheral tissues (including heart and kidney) implies a broader signaling role for these compounds and emphasizes the extent of symbiotic microbial influences in mammalian homeostasis.
Project description:We previously reported that alcohol drinkers with and without cirrhosis showed a significant increase in fecal bile acid secretion compared to nondrinkers. We hypothesized this may be due to activation by alcohol of hepatic cyclic adenosine monophosphate responsive element-binding protein 3-like protein 3 (CREBH), which induces cholesterol 7α-hydroxylase (Cyp7a1). Alternatively, the gut microbiota composition in the absence of alcohol might increase bile acid synthesis by up-regulating Cyp7a1. To test this hypothesis, we humanized germ-free (GF) mice with stool from healthy human subjects (Ctrl-Hum), human subjects with cirrhosis (Cirr-Hum), and human subjects with cirrhosis and active alcoholism (Alc-Hum). All animals were fed a normal chow diet, and none demonstrated cirrhosis. Both hepatic Cyp7a1 and sterol 12α-hydroxylase (Cyp8b1) messenger RNA (mRNA) levels were significantly induced in the Alc-Hum and Ctrl-Hum mice but not in the Cirr-Hum mice or GF mice. Liver bile acid concentration was correspondingly increased in the Alc-Hum mice despite fibroblast growth factor 15, fibroblast growth receptor 4, and small heterodimer partner mRNA levels being significantly induced in the large bowel and liver of the Ctrl-Hum mice and Alc-Hum mice but not in the Cirr-Hum mice or GF mice. This suggests that the normal pathways of Cyp7a1 repression were activated in the Alc-Hum mice and Ctrl-Hum mice. CREBH mRNA was significantly induced only in the Ctrl-Hum mice and Alc-Hum mice, possibly indicating that the gut microbiota up-regulate CREBH and induce bile acid synthesis genes. Analysis of stool bile acids showed that the microbiota of the Cirr-Hum and Alc-Hum mice had a greater ability to deconjugate and 7α-dehydroxylate primary bile acids compared to the microbiota of the Cirr-Hum mice. 16S ribosomal RNA gene sequencing of the gut microbiota showed that the relative abundance of taxa that 7-α dehydroxylate primary bile acids was higher in the Ctrl-Hum and Alc-Hum groups. Conclusion: The composition of gut microbiota influences the regulation of the rate-limiting enzymes in bile acid synthesis in the liver. (Hepatology Communications 2017;1:61-70).
Project description:Background and aimsBile acid malabsorption (BAM) is a debilitating disease characterized by loose stools and high stool frequency. The pathophysiology of BAM is not well-understood. We investigated postprandial enterohepatic and gluco-metabolic physiology, as well as gut microbiome composition and fecal bile acid content in patients with BAM.MethodsTwelve participants with selenium-75 homocholic acid taurine test-verified BAM and 12 healthy controls, individually matched on sex, age, and body mass index, were included. Each participant underwent 2 mixed meal tests (with and without administration of the bile acid sequestrant colesevelam) with blood sampling and evaluation of gallbladder motility; bile acid content and microbiota composition were evaluated in fecal specimens.ResultsPatients with BAM were characterized by increased bile acid synthesis as assessed by circulating 7-alpha-hydroxy-4-cholesten-3-one, fecal bile acid content, and postprandial concentrations of glucose, insulin, C-peptide, and glucagon. The McAuley index of insulin sensitivity was lower in patients with BAM than that in healthy controls. In patients with BAM, colesevelam co-administered with the meal reduced postprandial concentrations of bile acids and fibroblast growth factor 19 and increased 7-alpha-hydroxy-4-cholesten-3-one concentrations but did not affect postprandial glucagon-like peptide 1 responses or other gluco-metabolic parameters. Patients with BAM were characterized by a gut microbiome with low relative abundance of bifidobacteria and high relative abundance of Blautia, Streptococcus, Ruminococcus gnavus, and Akkermansia muciniphila.ConclusionPatients with BAM are characterized by an overproduction of bile acids, greater fecal bile acid content, and a gluco-metabolic profile indicative of a dysmetabolic prediabetic-like state, with changes in their gut microbiome composition potentially linking their enterohepatic pathophysiology and their dysmetabolic phenotype. ClinicalTrials.gov number NCT03009916.
Project description:The metabolic pathways encoded by the human gut microbiome constantly interact with host gene products through numerous bioactive molecules1. Primary bile acids (BAs) are synthesized within hepatocytes and released into the duodenum to facilitate absorption of lipids or fat-soluble vitamins2. Some BAs (approximately 5%) escape into the colon, where gut commensal bacteria convert them into various intestinal BAs2 that are important hormones that regulate host cholesterol metabolism and energy balance via several nuclear receptors and/or G-protein-coupled receptors3,4. These receptors have pivotal roles in shaping host innate immune responses1,5. However, the effect of this host-microorganism biliary network on the adaptive immune system remains poorly characterized. Here we report that both dietary and microbial factors influence the composition of the gut BA pool and modulate an important population of colonic FOXP3+ regulatory T (Treg) cells expressing the transcription factor RORγ. Genetic abolition of BA metabolic pathways in individual gut symbionts significantly decreases this Treg cell population. Restoration of the intestinal BA pool increases colonic RORγ+ Treg cell counts and ameliorates host susceptibility to inflammatory colitis via BA nuclear receptors. Thus, a pan-genomic biliary network interaction between hosts and their bacterial symbionts can control host immunological homeostasis via the resulting metabolites.
Project description:Alterations in the gastrointestinal microbiota have been implicated in obesity in mice and humans, but the conserved microbial functions that influence host energy metabolism and adiposity have not been determined. Here we show that bacterial bile salt hydrolase (BSH) controls a microbe-host dialogue which functionally regulates host lipid metabolism and weight gain. Expression of cloned BSH enzymes in the GI tract of gnotobiotic or conventional mice significantly altered plasma bile acid signatures and regulated transcription of key genes involved in lipid metabolism (PPARgamma angptl4), cholesterol metabolism (abcg5/8), gastrointestinal homeostasis (regIIIgamma) and circadian rhythm (dbp, per1/2) in the liver or small intestine. High-level expression of BSH in conventionally raised mice resulted in significant reduction of host weight-gain, plasma cholesterol and liver triglycerides. We demonstrate that bacterial BSH activity significantly impacts systemic metabolic processes and adiposity in the host, and represents a key mechanistic target for the control of obesity and hypercholesterolaemia.
Project description:The interrelationships between our diets and the structure and operations of our gut microbial communities are poorly understood. A model microbial community of ten sequenced human gut bacteria was introduced into gnotobiotic mice and changes in the abundance of each species were measured in response to randomized perturbations of four defined ingredients in the host diet. From the responses, we developed a statistical model that predicted over 50% of the variation in species abundance in response to the diet perturbations and were able to identify which factors in the diet best explained the changes seen for each community member. The community’s transcriptional response was driven by the absolute abundance of each species, as diet ingredient concentrations were not associated with significant changes in the transcription of individual community members.
Project description:Indigestible polysaccharides, such as dietary fibers, benefit the host by improving the intestinal environment. Short-chain fatty acids (SCFAs) produced by gut microbial fermentation from dietary fibers exert various physiological effects. The bacterial polysaccharide curdlan benefits the host intestinal environment, although its effect on energy metabolism and SCFA production remains unclear. Hence, this study aimed to elucidate the effect of curdlan intake on gut microbial profiles, SCFA production, and energy metabolism in a high-fat diet (HFD)-induced obese mouse model. Gut microbial composition of fecal samples from curdlan-supplemented HFD-fed mice indicated an elevated abundance of Bacteroidetes, whereas a reduced abundance of Firmicutes was noted at the phylum level compared with that in cellulose-supplemented HFD-fed mice. Moreover, curdlan supplementation resulted in an abundance of the family Bacteroidales S24-7 and Erysipelotrichaceae, and a reduction in Deferribacteres in the feces. Furthermore, curdlan supplementation elevated fecal SCFA levels, particularly butyrate. Although body weight and fat mass were not affected by curdlan supplementation in HFD-induced obese mice, HFD-induced hyperglycemia was significantly suppressed with an increase in plasma insulin and incretin GLP-1 levels. Curdlan supplementation elevated fecal bile acid and SCFA production, improved host metabolic functions by altering the gut microbial composition in mice.