Project description:Bile acids, which are synthesized from cholesterol by the liver, are chemically transformed along the intestinal tract by the gut microbiota, and the products of these transformations signal through host receptors, affecting overall host health. These transformations include bile acid deconjugation, oxidation, and 7α-dehydroxylation. An understanding of the biogeography of bile acid transformations in the gut is critical because deconjugation is a prerequisite for 7α-dehydroxylation and because most gut microorganisms harbor bile acid transformation capacity. Here, we used a coupled metabolomic and metaproteomic approach to probe in vivo activity of the gut microbial community in a gnotobiotic mouse model. Results revealed the involvement of Clostridium scindens in 7α-dehydroxylation, of the genera Muribaculum and Bacteroides in deconjugation, and of six additional organisms in oxidation (the genera Clostridium, Muribaculum, Bacteroides, Bifidobacterium, Acutalibacter, and Akkermansia). Furthermore, the bile acid profile in mice with a more complex microbiota, a dysbiosed microbiota, or no microbiota was considered. For instance, conventional mice harbor a large diversity of bile acids, but treatment with an antibiotic such as clindamycin results in the complete inhibition of 7α-dehydroxylation, underscoring the strong inhibition of organisms that are capable of carrying out this process by this compound. Finally, a comparison of the hepatic bile acid pool size as a function of microbiota revealed that a reduced microbiota affects host signaling but not necessarily bile acid synthesis. In this study, bile acid transformations were mapped to the associated active microorganisms, offering a systematic characterization of the relationship between microbiota and bile acid composition.
Project description:The human gut microbiota impacts host metabolism and has been implicated in the pathophysiology of obesity and metabolic syndromes. However, defining the roles of specific microbial activities and metabolites on host phenotypes has proven challenging due to the complexity of the microbiome-host ecosystem. Here, we identify strains from the abundant gut bacterial phylum Bacteroidetes that display selective bile salt hydrolase (BSH) activity. Using isogenic strains of wild-type and BSH-deleted Bacteroides thetaiotaomicron, we selectively modulated the levels of the bile acid tauro-b-muricholic acid in monocolonized gnotobiotic mice. B. thetaiotaomicron BSH mutant-colonized mice displayed altered metabolism, including reduced weight gain and respiratory exchange ratios, as well as transcriptional changes in metabolic, circadian rhythm, and immune pathways in the gut and liver. Our results demonstrate that metabolites generated by a single microbial gene and enzymatic activity can profoundly alter host metabolism and gene expression at local and organism-level scales.
Project description:Gut microbiome modulates the host immune development, yet the functional contribution of gut fungi remains elusive. We previously showed that mice colonized only with fungi displayed allergic features and fecal metabolite profiles similar to germ-free mice. To gain insights into the functional changes attributed to fungal colonization, we performed proteomic analyses of feces and small intestine of gnotobiotic mice colonized with either bacteria, fungi, or both. Comparison of fecal metaproteomic profiles between mouse groups yielded broad changes in the relative levels of bacterial, fungal and mouse proteins. Many of the detected fungal proteins have been previously reported as a part of extracellular vesicles and having immunomodulating properties. Changes in the levels of mouse proteins derived from the small intestine impacted essential cellular pathways, including lipid metabolism and apoptosis. The results show how fungal colonization impacts the host proteome and suggest an influence on the host final cellular phenotype.
Project description:Bile acids are detergent molecules that solubilize dietary lipids and lipid-soluble vitamins. Humans synthesize bile acids with α-orientation hydroxyl groups which can be biotransformed by gut microbiota to toxic, hydrophobic bile acids, such as deoxycholic acid (DCA). Gut microbiota can also convert hydroxyl groups from the α-orientation through an oxo-intermediate to the β-orientation, resulting in more hydrophilic, less toxic bile acids. This interconversion is catalyzed by regio- (C-3 vs. C-7) and stereospecific (α vs. β) hydroxysteroid dehydrogenases (HSDHs). So far, genes encoding the urso- (7α-HSDH & 7β-HSDH) and iso- (3α-HSDH & 3β-HSDH) bile acid pathways have been described. Recently, multiple human gut clostridia were reported to encode 12α-HSDH, which interconverts DCA and 12-oxolithocholic acid (12-oxoLCA). 12β-HSDH completes the epi-bile acid pathway by converting 12-oxoLCA to the 12β-bile acid denoted epiDCA; however, a gene(s) encoding this enzyme has yet to be identified. We confirmed 12β-HSDH activity in cultures of Clostridium paraputrificum ATCC 25780. From six candidate C. paraputrificum ATCC 25780 oxidoreductase genes, we discovered the first gene (DR024_RS09610) encoding bile acid 12β-HSDH. Phylogenetic analysis revealed unforeseen diversity for 12β-HSDH, leading to validation of two additional bile acid 12β-HSDHs through a synthetic biology approach. By comparison to a previous phylogenetic analysis of 12α-HSDH, we identified the first potential C-12 epimerizing strains: Collinsella tanakaei YIT 12063 and Collinsella stercoris DSM 13279. A Hidden Markov Model search against human gut metagenomes located putative 12β-HSDH genes in about 30% of subjects within the cohorts analyzed, indicating this gene is relevant in the human gut microbiome.
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host's mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
Project description:Rationale: Physical exercise is essential for skeletal integrity and bone health. The gut microbiome, as a pivotal modulator of overall physiologic states, is closely associated with skeletal homeostasis and bone metabolism. However, the potential role of intestinal microbiota in the exercise-mediated bone gain remains unclear. Methods: We conducted microbiota depletion and fecal microbiota transplantation (FMT) in ovariectomy (OVX) mice and aged mice to investigate whether the transfer of gut ecological traits could confer the exercise-induced bone protective effects. The study analyzed the gut microbiota and metabolic profiles via 16S rRNA gene sequencing and LC-MS untargeted metabolomics to identify key microbial communities and metabolites responsible for bone protection. Transcriptome sequencing and RNA interference were employed to explore the molecular mechanisms. Results: We found that gut microbiota depletion hindered the osteogenic benefits of exercise, and FMT from exercised osteoporotic mice effectively mitigated osteopenia. Comprehensive profiling of the microbiome and metabolome revealed that the exercise-matched FMT reshaped intestinal microecology and metabolic landscape. Notably, alterations in bile acid metabolism, specifically the enrichment of taurine and ursodeoxycholic acid, mediated the protective effects on bone mass. Mechanistically, FMT from exercised mice activated the apelin signaling pathway and restored the bone-fat balance in recipient MSCs. Conclusion: Our study underscored the important role of the microbiota-metabolic axis in the exercise-mediated bone gain, heralding a potential breakthrough in the treatment of osteoporosis.
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host′s mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
Project description:Morphine and its pharmacological derivatives are the most prescribed analgesics for moderate to severe pain management. However, chronic use of morphine reduces pathogen clearance and induces bacterial translocation across the gut barrier. The enteric microbiome has been shown to play a critical role in the preservation of the mucosal barrier function and metabolic homeostasis. Here, we show for the first time, using bacterial 16s rDNA sequencing, that chronic morphine treatment significantly alters the gut microbial composition and induces preferential expansion of the gram-positive pathogenic and reduction of bile-deconjugating bacterial strains. A significant reduction in both primary and secondary bile acid levels was seen in the gut, but not in the liver with morphine treatment. Morphine induced microbial dysbiosis and gut barrier disruption was rescued by transplanting placebo-treated microbiota into morphine-treated animals, indicating that microbiome modulation could be exploited as a therapeutic strategy for patients using morphine for pain management. In this study, we establish a link between the two phenomena, namely gut barrier compromise and dysregulated bile acid metabolism. We show for the first time that morphine fosters significant gut microbial dysbiosis and disrupts cholesterol/bile acid metabolism. Changes in the gut microbial composition is strongly correlated to disruption in host inflammatory homeostasis13,14 and in many diseases (e.g. cancer/HIV infection), persistent inflammation is known to aid and promote the progression of the primary morbidity. We show here that chronic morphine, gut microbial dysbiosis, disruption of cholesterol/bile acid metabolism and gut inflammation; have a linear correlation. This opens up the prospect of devising minimally invasive adjunct treatment strategies involving microbiome and bile acid modulation and thus bringing down morphine-mediated inflammation in the host.