Project description:Gas-phase fractionation enables better quantitative accuracy, improves signal-to-noise ratios, and increases sensitivity in proteomic analyses. However, traditional gas-phase enrichment, which relies upon a large continuous bin, results in suboptimal enrichment, as most chromatographic separations are not 100% orthogonal relative to the first MS dimension (MS1 m/z). As such, ions with similar m/z values tend to elute at the same retention time, which prevents the partitioning of narrow precursor m/z distributions into a few large continuous gas-phase enrichment bins. To overcome this issue, we developed and tested the use of notched isolation waveforms, which simultaneously isolate multiple discrete m/z windows in parallel (e.g., 650-700 m/z and 800-850 m/z). By comparison to a canonical gas-phase fractionation method, notched waveforms do not require bin optimization via in silico digestion or wasteful sample injections to isolate multiple precursor windows. Importantly, the collection of all m/z bins simultaneously using the isolation waveform does not suffer from the sensitivity and duty cycle pitfalls inherent to sequential collection of multiple m/z bins. Applying a notched injection waveform provided consistent enrichment of precursor ions, which resulted in improved proteome depth with greater coverage of low-abundance proteins. Finally, using a reductive dimethyl labeling approach, we show that notched isolation waveforms increase the number of quantified peptides with improved accuracy and precision across a wider dynamic range.
Project description:Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate-limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper, we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching), is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA, which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment.
Project description:Protein glycosylation is essential for cell survival and regulates many cellular events. Reversible glycosylation is also dynamic in biological systems. The functions of glycoproteins are regulated by their dynamics to adapt the ever-changing inter- and intracellular environments. Glycans on proteins not only mediate a variety of protein activities, but also creates a steric hindrance for protecting the glycoproteins from degradation by proteases. In this work, a novel strategy integrating isotopic labeling, chemical enrichment and multiplexed proteomics was developed to simultaneously quantify the degradation and synthesis rates of many glycoproteins in human cells. We quantified the synthesis rates of 847 N-glycoproteins and the degradation rates of 704 glycoproteins in biological triplicate experiments, including many important glycoproteins such as CD molecules. Through comparing the synthesis and degradation rates, we found that most proteins have higher synthesis rates since cells are still growing throughout the time course, while a small group of proteins with lower synthesis rates mainly participate in adhesion, locomotion, localization, and signaling. This method can be widely applied in biochemical and biomedical research and provide insights into elucidating glycoprotein functions and the molecular mechanism of many biological events.
Project description:Most of the genetic architecture of schizophrenia (SCZ) has not yet been identified. Here, we apply a novel statistical algorithm called Covariate-Modulated Mixture Modeling (CM3), which incorporates auxiliary information (heterozygosity, total linkage disequilibrium, genomic annotations, pleiotropy) for each single nucleotide polymorphism (SNP) to enable more accurate estimation of replication probabilities, conditional on the observed test statistic ("z-score") of the SNP. We use a multiple logistic regression on z-scores to combine information from auxiliary information to derive a "relative enrichment score" for each SNP. For each stratum of these relative enrichment scores, we obtain nonparametric estimates of posterior expected test statistics and replication probabilities as a function of discovery z-scores, using a resampling-based approach that repeatedly and randomly partitions meta-analysis sub-studies into training and replication samples. We fit a scale mixture of two Gaussians model to each stratum, obtaining parameter estimates that minimize the sum of squared differences of the scale-mixture model with the stratified nonparametric estimates. We apply this approach to the recent genome-wide association study (GWAS) of SCZ (n = 82,315), obtaining a good fit between the model-based and observed effect sizes and replication probabilities. We observed that SNPs with low enrichment scores replicate with a lower probability than SNPs with high enrichment scores even when both they are genome-wide significant (p < 5x10-8). There were 693 and 219 independent loci with model-based replication rates ?80% and ?90%, respectively. Compared to analyses not incorporating relative enrichment scores, CM3 increased out-of-sample yield for SNPs that replicate at a given rate. This demonstrates that replication probabilities can be more accurately estimated using prior enrichment information with CM3.
Project description:Chelation complexes of the histidine-containing tripeptides HisAlaAla, AlaHisAla, and AlaAlaHis with Ni(II) and Cu(II) having a -1 net charge are characterized in the gas phase by infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory calculations. We address the question of whether the gas-phase complexes carry over characteristics from the corresponding condensed-phase species. We focus particularly on three aspects of their structure: (i) square-planar chelation by the deprotonated amide nitrogens around the metal ion (low-spin for the Ni case), (ii) metal-ion coordination of the imidazole side chain nitrogen, and (iii) the exceptional preference for metal-ion chelation by peptides with His in the third position from the N-terminus, as in the amino terminal Cu and Ni (ATCUN) motif. We find that square-planar binding around the metal ion, involving bonds to both deprotonated backbone nitrogens, one of the carboxylate oxygens and the N-terminal nitrogen, is the dominant binding motif for all three isomers. In contrast to the condensed-phase behavior, the dominant mode of binding for all three isomers does not involve the imidazole side chain, which is instead placed outside the coordination zone. Only for the AlaAlaHis isomer, the imidazole-bound structure is also detected as a minority population, as identified from a distinctive short-wavelength IR absorption. The observation that this conformation exists only for AlaAlaHis correlates with condensed-phase behavior at neutral-to-basic pH, in the sense that the isomer with His in the third position is exceptionally disposed to metal ion chelation by four nitrogen atoms (4N) when compared with the other isomers. These results also emphasize the divergence between the conformational stabilities in the gas phase and in solution or crystalline environments: in the gas phase, direct metal binding of the imidazole is overall less favorable than the alternative of a remote imidazole that can act as an intramolecular H-bond donor enhancing the gas-phase stability.
Project description:The gas-phase formation of water molecules in the diffuse interstellar medium (ISM) proceeds mainly via a series of reactions involving the molecular ions OH+, H2O+, and H3O+ and molecular hydrogen. These reactions form the backbone for the chemistry leading to the formation of several complex molecular species in space. A comprehensive understanding of the mechanisms involved in these reactions in the ISM necessitates an accurate knowledge of the rate coefficients at the relevant temperatures (10 to 100 K). We present measurements of the rate coefficients for two key reactions below 100 K, which, in both cases, are significantly higher than the values used in astronomical models thus far. The experimental rate coefficients show excellent agreement with dedicated theoretical calculations using a novel ring-polymer molecular dynamics approach that offers a first-principles treatment of low-temperature barrierless gas-phase reactions, which are prevalent in interstellar chemical networks.
Project description:In the analysis of biological tissue by imaging mass spectrometry (IMS), the limit of detection and dynamic range are of paramount importance in obtaining experimental results that provide insight into underlying biological processes. Many important biomolecules are present in the tissue milieu in low concentrations and in complex mixtures with other compounds of widely ranging abundances, challenging the limits of analytical technologies. In many IMS experiments, the ion signal can be dominated by a few highly abundant ion species. On trap-based instrument platforms that accumulate ions prior to mass analysis, these high abundance ions can diminish the detection and dynamic range of lower abundance ions. Herein, we describe two strategies for combating these challenges during IMS experiments on a hybrid QhFT-ICR MS. In one iteration, the mass resolving capabilities of a quadrupole mass filter are used to selectively enrich ions of interest via a technique previously termed continuous accumulation of selected ions. Second, we have introduced a supplemental dipolar AC waveform to the quadrupole mass filter of a commercial QhFT-ICR mass spectrometer to perform selected ion ejection prior to the ion accumulation region. This setup allows the selective ejection of the most abundant ion species prior to ion accumulation, thereby greatly improving the molecular depth with which IMS can probe tissue samples. The gain in sensitivity of both of these approaches roughly scales with the number of accumulated laser shots up to the charge capacity of the ion accumulation cell. The efficiencies of these two strategies are described here by performing lipid imaging mass spectrometry analyses of a rat brain.
Project description:Structure, stability, electronic structure, spectroscopy and chemical bonding properties of a fluorine atom doped gas-phase small to medium-sized magnesium clusters, FMgn (n = 2-20), systematically investigated by CALYPSO software together with density functional theory (DFT). Structural calculations showed that FMgn has a structural diversity which is rarely reported in other magnesium-based clusters before. F atoms were always located in the outer layer of the Mgn host clusters and only two or three Mg atoms surround it. FMg18 was revealed to be supposed to have robust relative stability. Charge transfer and density of states were calculated for analyzing the electronic structure characteristics. Theoretical calculations of IR, Raman and UV-Vis spectra were computed to provide data guidelines for future experimental observations. Finally, the F-Mg and Mg-Mg chemical bonds of the FMgn clusters were analyzed, including the critical bonding points (BCPs) of Laplacian of electron density (Δρ), electron localization function (ELF) and interaction region indicator (IRI). The kind and strength of chemical bonds reveal the mechanism by which the F atom was rapidly stabilized by Mgn (n = 2-20) host clusters.
Project description:Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is well-renowned for its ultrahigh resolving power and mass measurement accuracy. As with other types of analytical instrumentation, achievable signal-to-noise ratio (S/N) is an important analytical figure of merit with FTICR-MS. S/N can be improved with higher magnetic fields and longer time-domain signal acquisition periods. However, serial signal averaging of spectra or time-domain signals acquired with multiple ion populations is most commonly used to improve S/N. On the other hand, serial acquisition and averaging of multiple scans significantly increases required data acquisition time and is often incompatible with on-line chromatographic separations. In this study, we investigated the potential for increased S/N by averaging 4 spectra that were acquired in parallel with a single ICR cell with 4 pairs of dipole detection electrodes, each with an independent pre-amplifier. This spectral averaging was achieved with no need for multiple ion accumulation events nor multiple, serial excitation and detection events. These efforts demonstrated that parallel signal acquisition with 4 detector electrode pairs produces S/N 1.76-fold higher than that from a single detection electrode pair. With parallel detection, improved S/N was achieved with no observable loss in resolving power (100,000) as compared with that from a single detection electrode pair. These results demonstrate that parallel detection of multiple induced image current signals with multiple preamplifiers exists as a viable option for future instrumentation to increase achievable S/N and sensitivity. This approach may have general utility especially where conventional serial signal averaging is impractical.
Project description:Spectral imagers divide scenes into quantitative and narrowband spectral channels. They have become important metrological tools in many areas of science, especially remote sensing. Here, we propose and experimentally demonstrate a snapshot spectral imager using a parallel optical processing paradigm based on arrays of metasystems. Our multi-aperture spectral imager weighs less than 20 mg and simultaneously acquires 20 image channels across the 795- to 980-nm spectral region. Each channel is formed by a metasurface-tuned filter and a metalens doublet. The doublets incorporate absorptive field stops, reducing cross-talk between image channels. We demonstrate our instrument's capabilities with both still images and video. Narrowband filtering, necessary for the device's operation, also mitigates chromatic aberration, a common problem in metasurface imagers. Similar instruments operating at visible wavelengths hold promise as compact, aberration-free color cameras. Parallel optical processing using metasystem arrays enables novel, compact instruments for scientific studies and consumer electronics.