Project description:Staphylococcus aureus is a leading cause of bloodstream infections worldwide. In the United States, many of these infections are caused by a strain known as USA300. Although progress has been made, our understanding of the S. aureus molecules that promote bacteremia and survival in human blood is incomplete. To that end, we analyzed the USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB), a standard laboratory culture media. Notably, genes encoding several cytolytic toxins were up-regulated in human blood over time, and hlgA, hlgB, and hlgC (encoding gamma-hemolysin subunits HlgA, HlgB, and HlgC) were among the most highly up-regulated genes at all time points. Culture supernatants derived from a USA300 isogenic hlgABC-deletion strain (LAC?hlgABC) had significantly reduced capacity to form pores in human neutrophils and ultimately cause neutrophil lysis. Compared with the wild-type USA300 strain (LAC), LAC?hlgABC had modestly reduced ability to cause mortality in a mouse bacteremia model. On the other hand, wild-type and LAC?hlgABC strains caused virtually identical disease in a mouse skin infection model, and bacterial survival and neutrophil lysis after phagocytosis in vitro was similar between these strains. Comparison of the cytolytic capacity of culture supernatants from wild-type and isogenic deletion strains lacking hlgABC, lukS/F-PV (encoding PVL), and/or lukDE revealed significant functional redundancy among two-component leukotoxins in vitro. These findings may explain in part the apparent limited contribution of any single two-component leukotoxin to USA300 immune evasion and virulence. S. aureus strain USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB): time course.
Project description:Persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is life-threatening and occurs in up to 30% of MRSA bacteremia cases despite appropriate antimicrobial therapy. Isolates of MRSA that cause antibiotic-persistent MRSA bacteremia (APMB) typically have in vitro antibiotic susceptibilities equivalent to those causing antibiotic-resolving MRSA bacteremia (ARMB). Thus, persistence reflects host-pathogen interactions occurring uniquely in context of antibiotic therapy in vivo. However, host factors and mechanisms involved in APMB remain unclear. We compared DNA methylomes in circulating immune cells from patients experiencing APMB vs. ARMB. Overall, methylation signatures diverged in the distinct patient cohorts. Differentially methylated sites intensified proximate to transcription factor binding sites, primarily in enhancer regions. In APMB patients, significant hypo-methylation was observed in binding sites for CCAAT enhancer binding protein (C/EBP) and signal transducer / activator of transcription 1 (STAT1). In contrast, hypo-methylation in ARMB patients localized to glucocorticoid receptor and histone acetyltransferase p300 binding sites. These distinct methylation signatures were enriched in neutrophils and achieved a mean area under the curve of 0.85 when used to predict APMB using a classification model. These findings differentiate epigenotypes in patients experiencing APMB vs. ARMB, and suggest a risk stratification strategy for antibiotic persistence in patients treated for MRSA bacteremia.
Project description:Patient-derived organoids (PDOs) can model personalized therapy responses, however current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly-multiplexed mass cytometry platform to measure post translational modification (PTM) signaling, DNA-damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment specific drug responses in thousands of single-cell datasets, we developed Trellis — a highly-scalable, hierarchical tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rare, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate cancer cell plasticity — shifting proliferative stem cells to slow-cycling revival stem cells via YAP to protect cancer cells from chemotherapy.
Project description:Focusing on host response to infection, we utilized a murine model to develop a blood gene expression signature that accurately classified mice with candidemia and distinguished candidemia from S. aureus bacteremia. Validation of the signature was achieved in an independent cohort of mice.
Project description:Bottom-up proteomics database search algorithms used for peptide identification cannot comprehensively identify posttranslational modifications (PTMs) in a single-pass because of high false discovery rates (FDRs). A new approach to database searching enables Global PTM (G-PTM) identification by exclusively looking for curated PTMs, thereby avoiding the FDR penalty experienced during conventional variable modification searches. We identified nearly 2500 unique, high-confidence modified peptides comprising 31 different PTM types in single-pass database searches. Male C57BL/6J (B6) and CAST/EiJ (CAST) mice were purchased from The Jackson Laboratories (Bar Harbor, Maine) and housed in an environmentally controlled vivarium at the University of Wisconsin Biochemistry Department. Mice were provided standard rodent chow (Purina no. 5008) and water ad libitum, and maintained on a 12-hour light/dark cycle (6 AM – 6 PM). At 10 weeks of age, mice were sacrificed by CO2 asphyxiation. All animal procedures were preapproved by the University of Wisconsin Animal Care and Use Committee.
Project description:Bottom-up proteomics database search algorithms used for peptide identification cannot comprehensively identify posttranslational modifications (PTMs) in a single-pass because of high false discovery rates (FDRs). A new approach to database searching enables Global PTM (G-PTM) identification by exclusively looking for curated PTMs, thereby avoiding the FDR penalty experienced during conventional variable modification searches. We identified nearly 2500 unique, high-confidence modified peptides comprising 31 different PTM types in single-pass database searches.
Project description:The present study describes a novel xenograft-based biomarker discovery platform and proves its usefulness in the discovery of novel serum markers for prostate cancer (PCa). By immunizing immuno-competent mice with serum from nude mice bearing PCa xenografts, an antibody response against xenograft-derived antigens was elicited. By probing protein microarrays with serum from immunized mice, several PCa-derived antigens were identified, of which a subset was successfully retrieved in serum from mice bearing PCa xenografts and validated in human serum samples of PCa patients. In conclusion, this novel method allows for the identification of low abundant cancer-derived serum proteins, circumventing dynamic range and host-response issues in standard patient cohort proteomics comparisons.
Project description:The opportunistic pathogen Staphylococcus aureus is carried asymptomatically by about one-third of the human population. Body sites known to be colonized by S. aureus are the skin, nasopharynx and gut. In particular, the mechanisms that allow S. aureus to pass the gut epithelial barrier and to invade the bloodstream are poorly understood. Therefore, our present study was aimed at investigating possible differences between gut-colonizing and bacteremia isolates of S. aureus. To this end, 74 gut-colonizing isolates from healthy individuals and 144 blood-culture isolates were characterized by whole-genome sequencing. Subsequently, the cellular and extracellular proteomes of six representative isolates were examined by mass spectrometry. Lastly, the virulence potential of these isolates was evaluated using infection models based on human gut epithelial cells, blood cells, and a small animal infection model. Intriguingly, our results show that gut-colonizing and bacteremia isolates with the same sequence type (ST1 or ST5) are very similar at the genomic and proteomic levels. Nonetheless, they display differences in virulence, but gut-colonizing isolates may be more virulent than bacteremia isolates and vice versa. Importantly, we show that the main decisive factor preventing infection of gut epithelial cells in vitro is the presence of a tight barrier. Based on our present observations, we propose that the integrity of the gut epithelial layer, rather than the pathogenic potential of a gut-colonizing S. aureus strain, is the main decisive factor that determines whether this colonizer will become an invasive pathogen.
Project description:Methicillin resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen chief amongst bloodstream infecting pathogens. MRSA produces an array of human specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes to infection with MRSA using RNA-Seq. We found that the overall transcriptional response to MRSA was weak both in the number of genes and the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we found that infection with live MRSA resulted in the down-regulation of genes related to innate immune response, and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in heat-killed MRSA or blood infected with live Staphylococcus epidermidis. Importantly, the muted signature was also present in patients with S. aureus bacteremia. We next identified the master regulator SaeRS and the SaeRS-regulated pore-forming toxins as key mediators of transcriptional suppression. The impaired chemokine and cytokine responses were reflected by circulating protein levels in the plasma. MRSA elicits a soluble milieu that is restrictive in the recruitment of human neutrophils compared to strains lacking saeRS. Thus, MRSA blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of S. aureus during invasive infection.