Project description:Patients with myelodysplastic syndromes (MDSs) display severe anemia but the mechanisms underlying this phenotype are incompletely understood. Right open-reading-frame kinase 2 (RIOK2) encodes a protein kinase located at 5q15, a region frequently lost in patients with MDS del(5q). Here we show that hematopoietic cell-specific haploinsufficient deletion of Riok2 (Riok2f/+Vav1cre) led to reduced erythroid precursor frequency leading to anemia. Proteomic analysis of Riok2f/+Vav1cre erythroid precursors suggested immune system activation, and transcriptomic analysis revealed an increase in p53-dependent interleukin (IL)-22 in Riok2f/+Vav1cre CD4+ T cells (TH22). Further, we discovered that the IL-22 receptor, IL-22RA1, was unexpectedly present on erythroid precursors. Blockade of IL-22 signaling alleviated anemia not only in Riok2f/+Vav1cre mice but also in wild-type mice. Serum concentrations of IL-22 were increased in the subset of patients with del(5q) MDS as well as patients with anemia secondary to chronic kidney disease. This work reveals a possible therapeutic opportunity for reversing many stress-induced anemias by targeting IL-22 signaling.
Project description:- tryptic digests of CD34+ FAC-sorted cells dilution series acquired in DIA mode on Orbitrap Lumos - tryptic digests of HSC, MEP, GMP, CMP FAC-sorted cells acquired in DIA mode on Orbitrap Lumos
Project description:Microarray experiments were performed using FAC-sorted young photoreceptors to analyze their transcriptome in comparison to remaining retinal cells at same developmental stage and retinal progenitors.
Project description:Microarray experiments were performed using FAC-sorted young photoreceptors to analyze their transcriptome in comparison to remaining retinal cells at same developmental stage and retinal progenitors. For each replicate, retinae of 6 to 8 postnatal day 0 pNestin-GFP or postnatal day 4 rhoEGFP mice were dissected and FAC-sorted based on GFP expression. RNA of fractions was isolated and subsequently analyzed with microarray experiment.
Project description:We achieved local recombination of striatal astrocytes and silenced Notch signalling activity through Rbpj-K depletion. Recombined astrocytes and neural progenitors generated from the striaral glia were FAC sorted and their molecular profile investigated in a scRNAseq experiment performed 5 wpi.
Project description:Rapid expansion of stress erythroid progenitors is a key response to acute anemia during stress erythropoiesis. Besides the rapidly amplifying progenitors, a small population of stem-cell like erythroid progenitors undergoes limited number of cell divisions and maintains their stemness. In this study, we addressed the differences in expression profiles of regulatory genes between two stress erythroid progenitor populations that were identified by proliferation capacity and physiological status. We used microarrays to detail the gene expression profiles of stem-cell like stress erythroid progenitors and rapidly amplifying stress erythroid progenitors during stress erythropoiesis.
Project description:Characterision of the bioactive peptide content of M-cells. M-cells derived from organoids were sorted using FAC sorting techniques and were lysed and analysed by LC-MS/MS using a peptidomics approach.
Project description:IBD is a complex autoimmune disease characterized by dysregulated interactions between host immune responses and microbiome at the intestinal epithelium interface. Here we identified shared protein alterations in intestinal epithelial differentiation and function between IBD and Citrobacter rodentium infected FVB mice. We discovered that prophylactic treatment with the mucosal healing therapy IL-22.Fc in the infected FVB mice reduced disease severity and rescued the mice from lethality. Notably, we observed an emergence of intermediate undifferentiated intestinal epithelial cells upon infection, with disrupted expression of the solute transporter machinery as well as components critical for intestinal barrier integrity. Multi-omics analyses revealed that with IL-22.Fc treatment several disease associated changes were prevented (including disruption of the solute transporter machinery), and proper physiological homeostatic functions of the intestine was restored. Taken together, we unveiled the disease relevance of the C. rodentium induced colitis model to IBD and demonstrated the protective role of the mucosal healing therapy IL-22.Fc in ameliorating the epithelial dysfunction.
Project description:48hpf kdrl:egfp zebrafish brains were dissociated using Liberase and pdgfr beta egfp postive cells FAC sorted into Trizol LS. RNA was extracted and amplified before sequencing. Samples were prepared in triplicate, with 6 brains used per samples.