Project description:Human mutations in the death receptor Fas or its ligand FasL cause autoimmune lymphoproliferative syndrome (ALPS), whereas mutations in caspase-8 or its adaptor FADD â which mediate cell death downstream of Fas/FasL â cause severe immunodeficiency in addition to ALPS. Mouse models have corroborated a role for FADD-caspase-8 in promoting inflammatory responses, but the mechanisms underlying immunodeficiency remain undefined. Here, we identify NEDD4-binding protein 1 (N4BP1) as a suppressor of cytokine production that is cleaved and inactivated by caspase-8. N4BP1 deletion in mice significantly increased production of select cytokines upon Toll-like receptor (TLR) 1/2, TLR7, or TLR9 stimulation, but not upon TLR3 or TLR4 engagement. N4BP1 did not suppress TLR3 or TLR4 responses in wild-type macrophages owing to TRIF- and caspase-8-dependent cleavage of N4BP1. Notably, impaired TLR3 and TLR4 cytokine responses of caspase-8-deficient macrophages were largely rescued by co-deletion of N4BP1. Thus, persistence of intact N4BP1 in caspase-8-deficient macrophages impairs their ability to mount robust cytokine responses. Tumor necrosis factor (TNF), like TLR3 or TLR4 agonists, also induced caspase-8-dependent cleavage of N4BP1, thereby licensing TRIF-independent TLRs to produce higher levels of inflammatory cytokines. Illustrating the importance of this function of TNF in vivo, TNF blockade increased the mortality of mice infected with Streptococcus Pneumoniae, but did not do so when infected mice lacked N4BP1. Collectively, our results identify N4BP1 as a potent suppressor of cytokine responses; reveal N4BP1 cleavage by Caspase-8 as a point of signal integration during inflammation; and offer an explanation for immunodeficiency caused by FADD-caspase-8 mutations.
Project description:Human mutations in the death receptor Fas or its ligand FasL cause autoimmune lymphoproliferative syndrome (ALPS), whereas mutations in caspase-8 or its adaptor FADD â which mediate cell death downstream of Fas/FasL â cause severe immunodeficiency in addition to ALPS. Mouse models have corroborated a role for FADD-caspase-8 in promoting inflammatory responses, but the mechanisms underlying immunodeficiency remain undefined. Here, we identify NEDD4-binding protein 1 (N4BP1) as a suppressor of cytokine production that is cleaved and inactivated by caspase-8. N4BP1 deletion in mice significantly increased production of select cytokines upon Toll-like receptor (TLR) 1/2, TLR7, or TLR9 stimulation, but not upon TLR3 or TLR4 engagement. N4BP1 did not suppress TLR3 or TLR4 responses in wild-type macrophages owing to TRIF- and caspase-8-dependent cleavage of N4BP1. Notably, impaired TLR3 and TLR4 cytokine responses of caspase-8-deficient macrophages were largely rescued by co-deletion of N4BP1. Thus, persistence of intact N4BP1 in caspase-8-deficient macrophages impairs their ability to mount robust cytokine responses. Tumor necrosis factor (TNF), like TLR3 or TLR4 agonists, also induced caspase-8-dependent cleavage of N4BP1, thereby licensing TRIF-independent TLRs to produce higher levels of inflammatory cytokines. Illustrating the importance of this function of TNF in vivo, TNF blockade increased the mortality of mice infected with Streptococcus Pneumoniae, but did not do so when infected mice lacked N4BP1. Collectively, our results identify N4BP1 as a potent suppressor of cytokine responses; reveal N4BP1 cleavage by Caspase-8 as a point of signal integration during inflammation; and offer an explanation for immunodeficiency caused by FADD-caspase-8 mutations.
Project description:We identified RIOK2 as a FADD-interacting protein that is essential for caspase-8-dependent cleavage of GSDMD. RIOK2’s ATPase activity drives the transport of lysosome to ER through activating myosin II and thereby translocate FADD-RIPK1-caspase-8 complex from lysosome to ER. Importantly, RIOK2’s ATPase activity also promotes the association of RIOK2 with FADD–RIPK1–caspase-8 complex and directly activates cleavage of caspase-8 and GSDMD both at ER and in vitro.