Project description:ABSTRACT Background: Viral myocarditis is a life-threatening illness that may lead to heart failure or cardiac arrhythmias. This study examined whether human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could be used to model the pathogenic processes of coxsackievirus-induced viral myocarditis and to screen antiviral therapeutics for efficacy. Methods and Results: Human iPSC-CMs were infected with a luciferase-expressing mutant of the coxsackievirus B3 strain (CVB3-Luc). Brightfield microscopy, immunofluorescence, and calcium imaging were used to characterize virally infected hiPSC-CMs. Viral proliferation on hiPSC-CMs was subsequently quantified using bioluminescence imaging. For drug screening, select antiviral compounds including interferon beta 1 (IFNβ1), ribavirin, pyrrolidine dithiocarbamate (PDTC), and fluoxetine were tested for their capacity to abrogate CVB3-Luc proliferation in hiPSC-CMs in vitro. The ability of some of these compounds to reduce CVB3-Luc proliferation in hiPSC-CMs was consistent with the reported drug effects in previous studies. Finally, mechanistic analyses via gene expression profiling of hiPSC-CMs infected with CVB3-Luc revealed an activation of viral RNA and protein clearance pathways within these hiPSC-CMs after IFNβ1 treatment. Conclusions: This study demonstrates that hiPSC-CMs express the coxsackievirus and adenovirus receptor, are susceptible to coxsackievirus infection, and can be used to confirm antiviral drug efficacy. Our results suggest that the hiPSC-CM/CVB3-Luc assay is a sensitive platform that could be used to screen novel antiviral therapeutics for their effectiveness in a high-throughput fashion. For this experiment, human induced pluripotent stem cell derived cardiomyocytes were infected with coxsackievirus at multiplicity of infection (MOI) of 5 for 8 hours. Cells were treated with and without interferon beta 1 in order to determine if treatment activates antiviral response genes and/or viral clearance pathways. 4 total samples (2 for each condition) were analyzed
Project description:ABSTRACT Background: Viral myocarditis is a life-threatening illness that may lead to heart failure or cardiac arrhythmias. This study examined whether human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could be used to model the pathogenic processes of coxsackievirus-induced viral myocarditis and to screen antiviral therapeutics for efficacy. Methods and Results: Human iPSC-CMs were infected with a luciferase-expressing mutant of the coxsackievirus B3 strain (CVB3-Luc). Brightfield microscopy, immunofluorescence, and calcium imaging were used to characterize virally infected hiPSC-CMs. Viral proliferation on hiPSC-CMs was subsequently quantified using bioluminescence imaging. For drug screening, select antiviral compounds including interferon beta 1 (IFNβ1), ribavirin, pyrrolidine dithiocarbamate (PDTC), and fluoxetine were tested for their capacity to abrogate CVB3-Luc proliferation in hiPSC-CMs in vitro. The ability of some of these compounds to reduce CVB3-Luc proliferation in hiPSC-CMs was consistent with the reported drug effects in previous studies. Finally, mechanistic analyses via gene expression profiling of hiPSC-CMs infected with CVB3-Luc revealed an activation of viral RNA and protein clearance pathways within these hiPSC-CMs after IFNβ1 treatment. Conclusions: This study demonstrates that hiPSC-CMs express the coxsackievirus and adenovirus receptor, are susceptible to coxsackievirus infection, and can be used to confirm antiviral drug efficacy. Our results suggest that the hiPSC-CM/CVB3-Luc assay is a sensitive platform that could be used to screen novel antiviral therapeutics for their effectiveness in a high-throughput fashion. For this experiment, human induced pluripotent stem cell derived cardiomyocytes were infected with coxsackievirus at multiplicity of infection (MOI) of 5 for 8 hours. Cells were treated with and without interferon beta 1 in order to determine if treatment activates antiviral response genes and/or viral clearance pathways.
Project description:Drug-induced cardiotoxicity is a widespread clinical issue affecting numerous drug classes and remains difficult to treat. One such drug class is Tyrosine Kinase Inhibitors (TKIs), which cause varying degrees of contraction-related cardiotoxicity usually after weeks of exposure. Understanding molecular mechanisms underlying both acute and chronic toxicity of TKIs could help identify new treatment opportunities. Here, we presented transcriptome responses to four TKIs (Sunitinib, Sorafenib, Lapatinib and Erlotinib) across 3 doses and 4 time points in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Gene expression evolved continually under drug treatment and revealed changes in several biological networks that were associated with cardiac metabolism and contraction. These changes were confirmed by proteomics and resulted in metabolic and structural remodeling of hiPSC-CMs. One of the metabolic remodeling was the increased aerobic glycolysis induced by Sorafenib, which is an adaptive response in preserving cell survival under Sorafenib treatment. Drug adaptation in cardiac cells may represent new targets for managing chronic forms of TKI-induced cardiotoxicity.
Project description:In order to investigate the changes of hiPSC-CMS transcriptome after alcohol treatment and whether losartan has an effect on the changes of hiPSC-CM transcriptome after alcohol treatment, RNAseq was performed on hiPSC-CMs treated with 100mM alcohol and 100mM alcohol co-treated with1uM losartan.
Project description:Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide great opportunities for mechanistic dissection of human cardiac pathophysiology; however, hiPSC-CMs remain immature relative to the adult heart. To identify novel signaling pathways driving the maturation process during heart development, we analyzed published transcriptional and epigenetic datasets from hiPSC-CMs, prenatal and postnatal human hearts. These analyses revealed that several components of the MAPK and PI3K-AKT pathways are downregulated in the postnatal heart. Here, we show that dual inhibition of these pathways for only 5 days significantly enhances the maturation of day-30 hiPSC-CMs in many domains: hypertrophy, multinucleation, metabolism, t-tubule density, calcium handling, and electrophysiology, many equivalent to day-60 hiPSC-CMs. These data indicate that the MAPK/PI3K/AKT pathways are involved in cardiomyocyte maturation and provide proof-of-concept for the manipulation of key signaling pathways for optimal hiPSC-CM maturation, a critical aspect of faithful in vitro modeling of cardiac pathologies and subsequent drug discovery.
Project description:Modulating signaling pathways including Wnt and Hippo can induce cardiomyocyte proliferation in vivo. Applying these signaling modulators to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro can expand CMs only to modest extent (< 5-fold). Here, we demonstrate massive expansion of hiPSC-CMs in vitro (i.e. 100-250-fold) by glycogen synthase kinase-3β (GSK-3β) inhibition using CHIR99021 and concurrent removal of cell-cell contact. We show GSK-3β inhibition suppresses CM maturation while contact removal prevents CMs from cell cycle exit. Remarkably, contact removal enabled 10-to-25-times greater expansion beyond GSK-3β inhibition alone. Mechanistically, cell cycle re-activation required both LEF/TCF activity and AKT phosphorylation, but it was independent from Yes associated protein (YAP) activity. Engineered heart tissues from expanded hiPSC-CMs showed the comparable contractility to those from unexpanded hiPSC-CMs, demonstrating uncompromised cellular functionality after expansion. In sum, we uncovered a molecular interplay that enables massive expansion hiPSC-CMs for large-scale drug screening and tissue engineering.
Project description:Analysis of the microRNA profile exression in hiPSC-CMs. Results provide important information of the miRNAs expressed in hiPSC-CMs under control conditions.
Project description:Cardiovascular toxicity causes adverse drug reactions and may lead to drug removal from the pharmaceutical market. Cancer therapies can induce life-threatening cardiovascular side effects such as arrhythmias, muscle cell death, or vascular dysfunction. New technologies have enabled cardiotoxic compounds to be identified earlier in drug development. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) and vascular endothelial cells (ECs) can screen for drug-induced alterations in cardiovascular cell function and survival. However, most existing hiPSC models for cardiovascular drug toxicity utilize two-dimensional, immature cells grown in static culture. Improved in vitro models to mechanistically interrogate cardiotoxicity would utilize more adult-like, mature hiPSC-derived cells in an integrated system whereby toxic drugs and protective agents can flow between hiPSC-ECs that represent systemic vasculature and hiPSC-CMs that represent heart muscle (myocardium). Such models would be useful for testing the multi-lineage cardiotoxicities of chemotherapeutic drugs such as VEGFR2/PDGFR-inhibiting tyrosine kinase inhibitors (VPTKIs). Here, we develop a multi-lineage, fully-integrated, cardiovascular organ-chip that can enhance hiPSC-EC and hiPSC-CM functional and genetic maturity, model endothelial barrier permeability, and demonstrate long-term functional stability.