Project description:In this study, we describe the isolation and identification of Streptomyces isolates collected from traditional medicinal plants’ rhizosphere during a campaign in Hamedan Province, Iran. Traditional medicinal plants represent a rich and unique source for the isolation of Streptomyces and new antimicrobial compounds. This strain was isolated from the rhizosphere of Helichrysum rubicundum
Project description:This is the GC Orbitrap data accompanying the FluoroMatch GC Library manuscript.
References and software are available here:
https://innovativeomics.com/software/fluoromatch-gc-modular-pfas-annotation/
Despite thousands of documented PFAS, approaches to characterize volatile and semi-volatile PFAS are limited. To address this gap, we developed a non-targeted gas chromatography high-resolution mass spectrometry (GC-HRMS) workflow to extend coverage of volatile and semi-volatile PFAS. This workflow includes new FlouroMatch GC mass spectral libraries (>1900 EI and PCI predicted and experimental spectra) and characterization of thousands of PFAS specific EI fragments for fragment screening. Liquid chromatography (LC) and GC-HRMS approaches were highly complementary, with GC-HRMS revealing diverse PFAS profiles in 8 different environmental and biological matrices distinct from PFAS detected in LC approaches. For example, we detected a previously unreported PFAS, 2-(perfluorohexyl)ethanethiol in multiple firefighting foam (AFFF) formulations and a novel feature tentatively annotated as N-methyl-N-(2-hydroxyethyl) perfluorooctanesulfonamide (MeFOSE alcohol) that was consistently detected in various matrices related to point and non-point PFAS exposures including dried blood spots, leachate, industrial effluent, and settled dust collected from homes, which were not detected in corresponding LC approaches. Personal exposure to volatile and semi-volatile PFAS was found to vary significantly across individuals. In a cohort of 48 children in Connecticut wearing wristband passive samplers, GC-HRMS fragment screening revealed that 46% of 40 unique airborne PFAS detected only occurred in a single child, and 58% of 47 unique PFAS detected in settled dust collected from 11 households were only detected in a single home. Findings highlight the importance of personal monitoring using a combination of non-targeted GC and LC-HRMS approaches to comprehensively characterize PFAS exposures. The novel methods that we have established will allow the health burden PFAS to be rigorously evaluated, ultimately informing regulatory policies and public health interventions.
Project description:This project aims to discover novel bioactive compounds from Streptomyces isolated from the rhizosphere from wild medicinal plants from Hamedan province, Iran. Proteomics is used to assist in discovery and characterization of the compounds. Streptomyces isolates are grown on ISP-4 medium for three days, proteins were extracted and analysed by shotgun proteomics.
Project description:Interventions: Gold Standard:pathological diagnosis ;Index test:Volatile organic compounds detected by gas chromatography-mass spectrometer and gas chromatography-ion migration spectrometry
Primary outcome(s): Volatile organic compounds;sensitivity;specificity
Study Design: Diagnostic test for accuracy
Project description:We performed ribosome profiling which is the deep-sequencing of mRNA fragments protected by translating ribosome for two Streptomyces species through different growth phases to provide the translatome data
Project description:Grape volatiles include a great number of compounds, among which monoterpenes, alcohols,esters and carbonyls were found.Grape may be divided into aromatic and non-aromatic varieties. ‘Shine Muscat’ belongs to the aromatic cultivar. The most abundant free compounds detected in Muscat grape were linalool, geraniol, citronellol, nerol. Grapevine (Vitis vinifera L.) is an economically important and widely cultivated fruit crop. Grape quality is important for its market value and is largely decided by its taste and aroma.Gas-chromatograph mass-spectrometry (GC-MS) was performed to observe changes of the volatile compounds.
Project description:In this work, we identified glucose and glycerol as tacrolimus repressing carbon sources in the important species Streptomyces tsukubaensis. A genome-wide analysis of the transcriptomic response to glucose and glycerol additions was performed using microarray technology. The transcriptional time series obtained allowed us to compare the transcriptomic profiling of S. tsukubaensis growing under tacrolimus producing and non-producing conditions. The analysis revealed important and different metabolic changes after the additions and a lack of transcriptional activation of the fkb cluster. In addition, we detected important differences in the transcriptional response to glucose between S. tsukubaensis and the model species Streptomyces coelicolor. A number of genes encoding key players of morphological and biochemical differentiation were strongly and permanently downregulated by the carbon sources. Finally, we identified several genes showing transcriptional profiles highly correlated to that of the tacrolimus biosynthetic pathway regulator FkbN that might be potential candidates for the improvement of tacrolimus production
Project description:Transcriptomic and GC-MS metabolomic analysis to provide insight into aroma volatile compounds of ‘Granny Smith’ and ‘Jonagold’ apples (Malus domestica)
Project description:Biofilms are ubiquitous in natural, medical, and engineering environments. While most antibiotics that primarily aim to inhibit cell growth may result in bacterial drug resistance, biofilm inhibitors do not affect cell growth and there is less chance of developing resistance. This work sought to identify novel, non-toxic and potent biofilm inhibitors from Streptomyces bacteria for reducing the biofilm formation of Pseudomonas aeruginosa PAO1. Out of 4300 Streptomyces strains, one species produced and secreted peptide(s) to inhibit P. aeruginosa biofilm formation by 93% without affecting the growth of planktonic cells. Global transcriptome analyses (DNA microarray) revealed that the supernatant of the Streptomyces 230 strain induced phenazine, pyoverdine, and pyochelin synthesis genes. Electron microscopy showed that the supernatant of Streptomyces 230 strain reduced the production of polymeric matrix in P. aeruginosa biofilm cells, while the Streptomyces species enhanced swarming motility of P. aeruginosa. Therefore, current study suggests that Streptomyces bacteria are an important resource of biofilm inhibitors as well as antibiotics.
Project description:Two component sensor-response regulator systems (TCSs) are very common in the genomes of the Streptomyces species that have been fully sequenced to date. It has been suggested that this large number is an evolutionary response to the variable environment that Streptomyces encounter in soil. Notwithstanding this, TCSs are also more common in the sequenced genomes of other Actinomycetales when these are compared to the genomes of most other eubacteria. In this study, we have used DNA/DNA genome microarray analysis to compare fourteen Streptomyces species and one closely related genus to Streptomyces coelicolor in order to identify a core group of such systems. This core group is compared to the syntenous and non-syntenous TCSs present in the genome sequences of other Actinomycetales in order to separate the systems into those present in Actinomycetales in general, the Streptomyces specific systems and the species specific systems. Horizontal transfer does not seem to play a very important role in the evolution of the TCS complement analyzed in this study. However, cognate pairs do not necessarily seem to evolve at the same pace, which may indicate the evolutionary responses to environmental variation may be reflected differently in sequence changes within the two components of the TCSs. The overall analysis allowed subclassification of the orphan TCSs and the TCS cognate pairs and identification of possible targets for further study using gene knockouts, gene overexpression, reporter genes and yeast two hybrid analysis.