Fused in sarcoma regulates DNA replication timing and progression
Ontology highlight
ABSTRACT: Fused-in-sarcoma (FUS) encodes an RNA-binding protein with diverse roles in transcriptional activation and RNA splicing. While oncogenic fusions of FUS and transcription factor DNA-binding domains are associated with soft tissue sarcomas, dominant mutations in FUS cause amyotrophic lateral sclerosis (ALS). FUS has also been implicated in genome maintenance. However, the underlying mechanisms are unknown.
Here, we applied gene editing, functional reconstitution and integrated proteomic and transcriptomics to illuminate roles for FUS in DNA replication and repair. Consistent with a supportive role in DNA double-strand break (DSB) repair FUS deficient cells exhibited subtle alterations in the recruitment and retention of DSB-associated factors, including 53BP1 and BRCA1. FUS-/- cells also exhibited reduced proliferative potential that correlated with reduced replication fork speed, diminished loading of pre-replication complexes, enhanced micronucleus formation, and attenuated expression and splicing of S-phase associated genes. Finally, FUS-deficient cells exhibited genome-wide alterations in DNA replication timing that were reversed upon reeexpression of FUS cDNA. FUS-dependent replication domains were enriched in transcriptionally active chromatin and FUS was required for the timely replication of transcriptionally active DNA. These findings suggest that alterations DNA replication kinetics and programming contribute to genome instability and functional defects in FUS deficient cells.
INSTRUMENT(S): LTQ Orbitrap
ORGANISM(S): Homo Sapiens (ncbitaxon:9606)
SUBMITTER: Randal Tibbetts
PROVIDER: MSV000087698 | MassIVE | Thu Jun 24 11:41:00 BST 2021
SECONDARY ACCESSION(S): PXD026917
REPOSITORIES: MassIVE
ACCESS DATA