Project description:We used RNA sequencing to measure genome-wide gene expression in the cyanobacterium Synechococcus elongatus PCC 7942 grown under dynamic light regimes that mimic the variation in light intensity seen on a Clear Day in nature, or the rapid changes in light intensity that accompany changes in shading We compare these gene expression dynamics to those of a culture grown under a Low Light condition that mimics the standard laboratory conditions used for study of cyanobacteria. Our analysis reveals that naturally relevant light conditions drastically modify gene expression dynamics in cyanobacteria Notably, the expression of circadian clock-controlled genes is responsive to changes in light intensity, showing modulated dynamics that can allow cyanobacteria to adapt their metabolism to changing environmental conditions
Project description:Cyanobacteria extracts and SPE fractions. LC MSMS analysis was performed in an UltiMate 3000 UPLC system (Thermo Scientific) using a Kinetex 1.7 mm C18 reversed phase UHPLC column (50 X 2.1 mm) and Maxis Impact HD Q-TOF mass spectrometer (Bruker Daltonics) equipped with ESI source.