Project description:Deletion of the conserved C-terminus of the Rothmund-Thomson syndrome helicase RECQ4 is highly tumorigenic. However, while the RECQ4 N-terminus is known to facilitate DNA replication initiation, the function of its C-terminus remains unclear. Using an unbiased proteomic approach, we identify an interaction between the RECQ4 N-terminus and the anaphase-promoting complex/cyclosome (APC/C) on human chromatin. We further show that this interaction stabilizes APC/C co-activator CDH1 and enhances APC/C-dependent degradation of the replication inhibitor Geminin, allowing replication factors to accumulate on chromatin. In contrast, the function is blocked by the RECQ4 C-terminus, which binds to protein inhibitors of APC/C. A cancer-prone, C-terminal-deleted RECQ4 mutation increases origin firing frequency, accelerates G1/S transition, and supports abnormally high DNA content. Our study reveals a role of the human RECQ4 C-terminus in antagonizing its N-terminus, thereby suppressing replication initiation, and this suppression is impaired by oncogenic mutations.
Project description:DNA replication is a fundamental biological process that is tightly regulated in all cells. In bacteria, DnaA controls when and where replication begins by building a step-wise complex that loads the replicative helicase onto chromosomal DNA. In many low-GC Gram-positive species, DnaA recruits the DnaD and DnaB proteins to function as adaptors to assist in helicase loading. How DnaA, its adaptors and the helicase form a complex at the origin is unclear. We addressed this question using the bacterial two-hybrid assay to determine how the initiation proteins from Bacillus subtilis interact with each other. We show that cryptic interaction sites play a key role in this process and we map these regions for the entire pathway. In addition, we found that the SirA regulator that blocks initiation in sporulating cells binds to a surface on DnaA that overlaps with DnaD. The interaction between DnaA and DnaD was also mapped to the same DnaA surface in the human pathogen Staphylococcus aureus, demonstrating the broad conservation of this surface. Therefore, our study has unveiled key protein interactions essential for initiation and our approach is widely applicable for mapping interactions in other signaling pathways that are governed by cryptic binding surfaces.
Project description:Coordinated initiation of DNA replication is essential to ensure efficient and timely DNA synthesis. Yet, molecular mechanism describing how replication initiation is coordinated in eukaryotic cells is not completely understood. Herein, we present data demonstrating a novel feature of RNAs transcribed in the proximity of actively replicating gene loci. We show that RNAs aNChoring ORC1 (ANCORs) to the histone variant H2A.Z are licensors of the DNA replication process. This ANCOR-H2A.Z interaction is essential for cells to initiate duplication of their genetic material. Widespread and locus-specific perturbations of these transcripts correlate with anomalous replication patterns and a notable loss of the H2A.Z replicative marker at the origin site. Collectively, we present a previously undescribed RNA-mediated mechanism that is associated with the generation of active replication origins in eukaryotic cells. Our findings delineate a strategy to modulate the origins of replication in human cells at a local and global level, with potentially broad biomedical implications.
Project description:Silver nanoclusters (AgNCs) have outstanding physicochemical characteristics, including the ability to interact with proteins and DNA. Given the growing number of diagnostic and therapeutic applications of AgNCs, we evaluated the impact of AgNCs on DNA replication and DNA damage response in cell-free extracts prepared from unfertilized Xenopus laevis eggs. We find that, among a number of silver nanomaterials, AgNCs uniquely inhibited genomic DNA replication and abrogated the DNA replication checkpoint in cell-free extracts. AgNCs did not affect nuclear membrane or nucleosome assembly. AgNCs-supplemented extracts showed a strong defect in the loading of the mini chromosome maintenance (MCM) protein complex, the helicase that unwinds DNA ahead of replication forks. FLAG-AgNCs immunoprecipitation and mass spectrometry analysis of AgNCs associated proteins demonstrated direct interaction between MCM and AgNCs. Our studies indicate that AgNCs directly prevent the loading of MCM, blocking pre-replication complex (pre-RC) assembly and subsequent DNA replication initiation. Collectively, our findings broaden the scope of silver nanomaterials experimental applications, establishing AgNCs as a novel tool to study chromosomal DNA replication.
Project description:While increasing knowledge is accumulating about the molecular mechanisms allowing the human pathogen Helicobacter pylori to survive and to subvert host defenses, much less is known about fundamental aspects of its biology, including DNA replication. We have studied the initiation step of chromosome replication of H. pylori and particularly the interaction between the initiator protein DnaA and its recently identified regulator HobA. This work has recently culminated in the determination of the crystal structure of the domains I and II of DnaA (DnaA(I-II)) in complex with HobA. By combining the structure with a variety of biochemical experiments we show that a tetramer of HobA can accommodate up to four DnaA molecules organized in a particular conformation within the complex. Mutations of the HobA interface that impaired the binding with DnaA were designed and proved to be lethal once introduced into H. pylori. These features suggest that HobA provides a molecular scaffold onto which regular oligomers of DnaA can assemble. The HobA-promoted oligomerization of DnaA could have a determinant role in the formation of the open complex. We propose a speculative model of HobA-dependent DnaA oligomerization leading to DNA unwinding. More generally, the parallel we draw with Escherichia coli DnaA and DiaA (HobA-like E. coli protein) will direct new studies that will contribute to the understanding of bacterial DNA replication.
Project description:Replication of telomeres requires the action of telomerase, the semi-conservative replication machinery and the stabilization of the replication fork during passage through telomeric DNA. Whether vertebrate telomeres support initiation of replication has not been experimentally addressed. Using Xenopus cell free extracts we established a system to study replication initiation within linear telomeric DNA substrates. We show binding of TRF2 to telomeric DNA, indicating that exogenous DNA exclusively composed of telomeric repeats is recognized by shelterin components. Interaction with telomere binding proteins is not sufficient to prevent a DNA damage response. Notably, we observe regulated assembly of the pre-replicative complex proteins ORC2, MCM6 and Cdc6 to telomeric DNA. Most importantly, we detect origin-dependent replication of telomeric substrates under conditions that inhibit checkpoint activation. These results indicate that pre-replicative complexes assemble within telomeric DNA and can be converted into functional origins.
Project description:Eukaryotic chromosomal DNA is faithfully replicated in a complex series of cell-cycle-regulated events that are incompletely understood. Here we report the reconstitution of DNA replication free in solution with purified proteins from the budding yeast Saccharomyces cerevisiae. The system recapitulates regulated bidirectional origin activation; synthesis of leading and lagging strands by the three replicative DNA polymerases Pol α, Pol δ, and Pol ε; and canonical maturation of Okazaki fragments into continuous daughter strands. We uncover a dual regulatory role for chromatin during DNA replication: promoting origin dependence and determining Okazaki fragment length by restricting Pol δ progression. This system thus provides a functional platform for the detailed mechanistic analysis of eukaryotic chromosome replication.
Project description:BackgroundEarly DNA replication occurs within actively transcribed chromatin compartments in mammalian cells, raising the immediate question of how early DNA replication coordinates with transcription to avoid collisions and DNA damage.ResultsWe develop a high-throughput nucleoside analog incorporation sequencing assay and identify thousands of early replication initiation zones in both mouse and human cells. The identified early replication initiation zones fall in open chromatin compartments and are mutually exclusive with transcription elongation. Of note, early replication initiation zones are mainly located in non-transcribed regions adjacent to transcribed regions. Mechanistically, we find that RNA polymerase II actively redistributes the chromatin-bound mini-chromosome maintenance complex (MCM), but not the origin recognition complex (ORC), to actively restrict early DNA replication initiation outside of transcribed regions. In support of this finding, we detect apparent MCM accumulation and DNA replication initiation in transcribed regions due to anchoring of nuclease-dead Cas9 at transcribed genes, which stalls RNA polymerase II. Finally, we find that the orchestration of early DNA replication initiation by transcription efficiently prevents gross DNA damage.ConclusionRNA polymerase II redistributes MCM complexes, but not the ORC, to prevent early DNA replication from initiating within transcribed regions. This RNA polymerase II-driven MCM redistribution spatially separates transcription and early DNA replication events and avoids the transcription-replication initiation collision, thereby providing a critical regulatory mechanism to preserve genome stability.
Project description:Transcription and DNA replication are tightly regulated to ensure coordination of gene expression with growth conditions and faithful transmission of genetic material to progeny. A large body of evidence has accumulated, indicating that encounters between protein machineries carrying out DNA and RNA synthesis occur in vivo and may have important regulatory consequences. This feature may be exacerbated in the case of compact genomes, like the one of bacteriophage λ, used in our study. Transcription that starts at the rightward pR promoter and proceeds through the λ origin of replication and downstream of it was proven to stimulate the initiation of λ DNA replication. Here, we demonstrate that the activity of a convergently oriented pO promoter decreases the efficiency of transcription starting from pR. Our results show, however, that a lack of the functional pO promoter negatively influences λ phage and λ-derived plasmid replication. We present data, suggesting that this effect is evoked by the enhanced level of the pR-driven transcription, occurring in the presence of the defective pO, which may result in the impeded formation of the replication initiation complex. Our data suggest that the cross talk between the two promoters regulates λ DNA replication and coordinates transcription and replication processes.