Proteomics

Dataset Information

0

Field-testing a molecular biotechnology+machine-learning approach for predicting reef coral resilience


ABSTRACT: Please see the appended files for a detailed treatise on the project. Briefly, reef corals were sampled seasonally, with the biopsies analyzed via proteomics (iTRAQ+nano-liquid chromatography/MS/MS). The proteomic data were then input into machine-learning models that made predictions about coral colony bleaching susceptibility. In this way, the previously developed proteomic-based machine-learning models were effectively field-tested. With respect to file naming, there were 36 samples analyzed across six iTRAQ "batches" (A, B, C, D, E, and F). Please see Table 1 (csv) for a key as to how to link the iTRAQ labels/tags with the respective samples. For each batch, three technical replicates were analyzed by nano-liquid chromatography followed by mass spectrometry (x 2; n=18 RAW and 18 MZML files). Each MZML peak file was queried against a host coral (Orbicella faveolata) and a composite Symbiodiniaceae (endosymbiotic dinoflagellates) transcriptome, generating 36 mzTAB results files in total.

INSTRUMENT(S): Q Exactive

ORGANISM(S): Durusdinium Sp. (ncbitaxon:2486700) Orbicella Faveolata (ncbitaxon:48498) Breviolum Sp. (ncbitaxon:2499526)

SUBMITTER: ANDERSON MAYFIELD  

PROVIDER: MSV000089240 | MassIVE | Tue Apr 12 07:17:00 BST 2022

REPOSITORIES: MassIVE

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2013-08-06 | E-GEOD-47184 | biostudies-arrayexpress
2013-08-06 | E-GEOD-47183 | biostudies-arrayexpress
2013-07-07 | E-GEOD-43335 | biostudies-arrayexpress
2013-08-06 | GSE47184 | GEO
2013-08-06 | GSE47183 | GEO
2013-07-07 | GSE43335 | GEO
2020-11-27 | MSV000086530 | MassIVE
2022-09-23 | GSE202988 | GEO
2020-05-06 | GSE127890 | GEO
| PRJNA729223 | ENA