ABSTRACT: 19 cover crops species root exudates were characterized by LC-MS/MS in DIA mode for chemical characterization of the root exudate profiles across different agricultural crops grown hydroponically.
Project description:19 cover crops species root exudates were characterized by GC-MS for chemical characterization of the root exudate profiles across different agricultural crops grown hydroponically.
Project description:19 cover crops species root exudates were characterized by LC-MS/MS in DIA mode for chemical characterization of the root exudate profiles across different agricultural crops grown hydroponically.
Project description:19 cover crops species root exudates were characterized by GC-MS for chemical characterization of the root exudate profiles across different agricultural crops grown hydroponically.
Project description:These samples are a part of a study investigating microbial responses to cover crop root exudates. We utilized 4 cover crop species (each with unique root exudate profiles), collected the pure root exudates, and applied them to soil mirocosms. metaG, metaT, metaP, and targeted and untargeted metabolomics were applied to assess the microbial responses.
Project description:These samples are a part of a study investigating microbial responses to cover crop root exudates. We utilized 4 cover crop species (each with unique root exudate profiles), collected the pure root exudates, and applied them to soil mirocosms. metaG, metaT, metaP, and targeted and untargeted metabolomics were applied to assess the microbial responses.
Project description:In our previous work, we found that the root exudates of sgn3 myb36 promoted the colonization of CHA0 on roots. Through LC-MS, we identified a large amount of glutamine (Gln) in the root exudates of sgn3 myb36. Therefore, we aim to use RNA-seq to uncover whether the root exudates of sgn3 myb36 and Gln have the same regulatory effects on CHA0. By conducting differential analysis with the CK (CHA0 treated with wild-type root exudates), we hope to identify the specific regulatory mechanisms of sgn3 myb36 and Gln on CHA0.
Project description:These samples are a part of a study investigating microbial responses to cover crop root exudates. We utilized 4 cover crop species (each with unique root exudate profiles), collected the pure root exudates, and applied them to soil mirocosms. metaG, metaT, metaP, and targeted and untargeted metabolomics were applied to assess the microbial responses.
Project description:These samples are a part of a study investigating microbial responses to cover crop root exudates. We utilized 4 cover crop species (each with unique root exudate profiles), collected the pure root exudates, and applied them to soil mirocosms. metaG, metaT, metaP, and targeted and untargeted metabolomics were applied to assess the microbial responses.