Project description:Staphylococcus aureus is a leading cause of hospital-associated infections. In addition, highly virulent strains of methicillin-resistant S. aureus (MRSA) are currently spreading outside health care settings. Survival in the human host is largely defined by the ability of S. aureus to resist mechanisms of innate host defense, of which antimicrobial peptides form a key part especially on epithelia and in neutrophil phagosomes. Here we demonstrate that the antimicrobial-peptide sensing system aps of the standard community-associated MRSA strain MW2 controls resistance to cationic antimicrobial peptides. The core of aps-controlled resistance mechanisms comprised the D-alanylation of teichoic acids (dlt operon), the incorporation of cationic lysyl-phosphatidylglycerol (L-PG) in the bacterial membrane (mprF), and the vraF/vraG putative antimicrobial peptide transporter. Further, the observed increased production of L-PG under the influence of cationic antimicrobial peptides was accompanied by the up-regulation of lysine biosynthesis. In noticeable difference to the aps system of S. epidermidis, only selected antimicrobial peptides strongly induced the aps response. Heterologous complementation with the S. epidermidis apsS gene indicated that this is likely caused by differences in the short extracellular loop of ApsS that interacts with the inducing antimicrobial peptide. Our study shows that the antimicrobial peptide sensor system aps is functional in the important human pathogen S. aureus, significant interspecies differences exist in the induction of the aps gene regulatory response, and aps inducibility is clearly distinguishable from effectiveness towards a given antimicrobial peptide. Keywords: Wild type control vs treated vs mutant
Project description:Staphylococcus aureus is a leading cause of hospital-associated infections. In addition, highly virulent strains of methicillin-resistant S. aureus (MRSA) are currently spreading outside health care settings. Survival in the human host is largely defined by the ability of S. aureus to resist mechanisms of innate host defense, of which antimicrobial peptides form a key part especially on epithelia and in neutrophil phagosomes. Here we demonstrate that the antimicrobial-peptide sensing system aps of the standard community-associated MRSA strain MW2 controls resistance to cationic antimicrobial peptides. The core of aps-controlled resistance mechanisms comprised the D-alanylation of teichoic acids (dlt operon), the incorporation of cationic lysyl-phosphatidylglycerol (L-PG) in the bacterial membrane (mprF), and the vraF/vraG putative antimicrobial peptide transporter. Further, the observed increased production of L-PG under the influence of cationic antimicrobial peptides was accompanied by the up-regulation of lysine biosynthesis. In noticeable difference to the aps system of S. epidermidis, only selected antimicrobial peptides strongly induced the aps response. Heterologous complementation with the S. epidermidis apsS gene indicated that this is likely caused by differences in the short extracellular loop of ApsS that interacts with the inducing antimicrobial peptide. Our study shows that the antimicrobial peptide sensor system aps is functional in the important human pathogen S. aureus, significant interspecies differences exist in the induction of the aps gene regulatory response, and aps inducibility is clearly distinguishable from effectiveness towards a given antimicrobial peptide. Keywords: Wild type control vs treated vs mutant Wild type untreated in triplicate is compared to wild type treated in triplicate along with three mutants in triplicate with and without treatment of indolicidin, totalling 30 samples
Project description:Understanding how pathogens respond to antimicrobial peptides, and how this compares to currently available antibiotics, is crucial to optimizing antibiotic therapy. Staphylococcus aureus has several known resistance mechanisms against human cationic antimicrobial peptides (CAMPs). We aim to determine how S. aureus responds to sheep and frog CAMPs, and whether this response is associated with resistance. Gene expression changes in Staphylococcus aureus Newman cells exposed to linear CAMPs were analyzed by DNA microarray. Three antimicrobial peptides were used in the analysis, two of them are derived from frog, temporin L and dermaseptin K4-S4(1-16), one is from sheep, ovispirin-1. The peptides induced the VraSR cell-wall regulon and several other genes which are also upregulated in cells treated with vancomycin and other cell wall-active antibiotics. In addition to this similarity, three genes/operons were particularly strongly induced by the peptides: vraDE, SA0205 and SAS016, encoding an ABC transporter, a putative membrane-bound lysostaphin-like peptidase and a small functionally unknown protein, respectively. Ovispirin-1 and dermaseptin K4-S4(1-16), which disrupt lipid bilayers by the carpet mechanism, were strong inducers of the vraDE operon. We show that high level induction by ovispirin-1 was dependent on the amide modification of the peptide C-terminus. This suggests that the amide group has a crucial role in the activation of the Aps sensory system, the regulator of vraDE. In contrast, temporin L, which disrupts lipid bilayers by forming pores, was clearly a weaker inducer of vraDE despite the C-terminal amide modification. Sensitivity testing with CAMPs and other antimicrobials suggested that VraDE is a transporter dedicated to resist bacitracin. We also showed that SA0205 belongs to the VraSR regulon. Furthermore, VraSR was shown to be important for resistance against a wide range of cell wall-active antibiotics and other antimicrobial agents including the amide-modified ovispirin-1, bacitracin, teicoplanin, cefotaxime and 10 other β-lactam antibiotics, chlorpromazine, thioridazine and EGTA. The effects of the three different antimicrobial peptides on gene expression of S. aureus Newman were studied by using whole genome oligo-DNA microarrays. Bacteria were grown in BHI medium to the early exponential phase (OD600=0.6) and antimicrobial peptides were added at sublethal concentrations. Samples were taken for RNA isolations after treating the cultures with the peptides for 10 minutes. Control cultures without peptide additions were treated similarly and in parallel.
Project description:Understanding how pathogens respond to antimicrobial peptides, and how this compares to currently available antibiotics, is crucial to optimizing antibiotic therapy. Staphylococcus aureus has several known resistance mechanisms against human cationic antimicrobial peptides (CAMPs). We aim to determine how S. aureus responds to sheep and frog CAMPs, and whether this response is associated with resistance. Gene expression changes in Staphylococcus aureus Newman cells exposed to linear CAMPs were analyzed by DNA microarray. Three antimicrobial peptides were used in the analysis, two of them are derived from frog, temporin L and dermaseptin K4-S4(1-16), one is from sheep, ovispirin-1. The peptides induced the VraSR cell-wall regulon and several other genes which are also upregulated in cells treated with vancomycin and other cell wall-active antibiotics. In addition to this similarity, three genes/operons were particularly strongly induced by the peptides: vraDE, SA0205 and SAS016, encoding an ABC transporter, a putative membrane-bound lysostaphin-like peptidase and a small functionally unknown protein, respectively. Ovispirin-1 and dermaseptin K4-S4(1-16), which disrupt lipid bilayers by the carpet mechanism, were strong inducers of the vraDE operon. We show that high level induction by ovispirin-1 was dependent on the amide modification of the peptide C-terminus. This suggests that the amide group has a crucial role in the activation of the Aps sensory system, the regulator of vraDE. In contrast, temporin L, which disrupts lipid bilayers by forming pores, was clearly a weaker inducer of vraDE despite the C-terminal amide modification. Sensitivity testing with CAMPs and other antimicrobials suggested that VraDE is a transporter dedicated to resist bacitracin. We also showed that SA0205 belongs to the VraSR regulon. Furthermore, VraSR was shown to be important for resistance against a wide range of cell wall-active antibiotics and other antimicrobial agents including the amide-modified ovispirin-1, bacitracin, teicoplanin, cefotaxime and 10 other β-lactam antibiotics, chlorpromazine, thioridazine and EGTA.
Project description:Staphylococcus aureus (S. aureus) is an important human and animal pathogen, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. magnolol has potent antimicrobial activity against S. aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with magnolol. Keywords: gene expression array-based, count
Project description:Staphylococcus aureus (S. aureus) is an important human and animal pathogen, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. Cryptotanshinone, a natural plant product, has potent antimicrobial activity against S. aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with cryptotanshinone. Keywords: gene expression array-based, count
Project description:Staphylococcus aureus (S. aureus) is an important human and animal pathogen, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. eugenol, a natural plant product, has potent antimicrobial activity against S. aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with eugenol. Keywords: gene expression array-based, count
Project description:S. aureus and MRSA are susceptible to TTO and are therefore targeted in nascent TTO clinical trails. We now report the alterations in the transcriptome of a S. aureus exposed to a growth inhibitory concentration of TTO. These efforts have uncovered additional mechanisms by which this membrane active antimicrobial substance inhibits bacterial growth.