Project description:Evaluating the risks and benefits of using traditional medicinal plants is of utmost importance for a huge fraction of the human population, in particular in Northern Vietnam. Zebrafish are increasingly used as a simple vertebrate model for testing toxic and physiological effects of compounds, especially on development. Here, we tested 12 ethanolic extracts from popular medicinal plants collected in Northern Vietnam for their effects on zebrafish survival and development during the first 4 days after fertilization. We characterized more in detail their effects on epiboly, hatching, growth, necrosis, body curvature, angiogenesis, skeletal development and mostly increased movement behavior. Finally, we confirm the effect on epiboly caused by the Mahonia bealei extract by staining the actin filaments and show that this extract also inhibits cell migration of mouse embryo fibroblasts. In conclusion, we show that zebrafish early life stages reveal that traditional medicinal plant extracts are able to affect embryo development to various degrees, prompting caution to apply these medications to pregnant women. In addition, we show that an extract causing delay in epiboly also inhibits mammalian cell migration, suggesting that this effect may serve as a preliminary test for identifying extracts that inhibit cancer metastasis.
Project description:Primary objectives: Definition of efficacy of lanreotid in the therapy of CID which is defined as a rate of regression of CID to grade G1 from the entry value (grade G3 or G4) according to CTCAE v.4.03
Primary endpoints: Paremeter of efficacy is the rate of regression of CID to grade G1 from the entry value (grade G3 or G4) during 7 days from the first administration of the investigational medicinal product.
Project description:The centromere-specific Histone H3-variant CENH3 (also known as CENP-A) is considered to be an epigenetic mark for establishment and propagation of centromere identity. Pulse-induction of CENH3 (Drosophila CID) in Schneider S2 cells incorporates into noncentromeric regions and generates CID islands that resist clearing from chromosome arms for multiple cell generations. We demonstrate that CID islands represent functional ectopic kinetochores, which are non-randomly distributed on the chromosome and display a preferential localization near telomeres and pericentric heterochromatin in transcriptionally silent, intergenic chromatin domains. Although overexpression of heterochromatin protein 1 (HP1) or increasing Histone acetylation interferes with CID islands formation on a global scale, induction of a locally defined region of synthetic heterochromatin by targeting HP1-LacI fusions to stably integrated Lac Operator arrays produces a proximal hotspot for CID islands formation. These data suggest that the characteristics of regions bordering heterochromatin promote de novo kinetochore assembly and thereby contribute to centromere identity. ArrayExpress Release Date: 2011-07-15 Person Roles: submitter Person Last Name: Diehl Person First Name: Sarah Person Mid Initials: Person Email: diehl@immunbio.mpg.de Person Phone: (+49) 761 5108 795 Person Address: Stuebeweg 51, 79108 Freiburg im Breisgau, Germany Person Affiliation: Max-Planck-Institute for Immunobiology and Epigenetics Person Roles: investigator Person Last Name: Heun Person First Name: Patrick Person Mid Initials: Person Email: heun@immunbio.mpg.de Person Phone: (+49) 761 5108 717 Person Address: Stuebeweg 51, 79108 Freiburg im Breisgau, Germany Person Affiliation: Max-Planck-Institute for Immunobiology and Epigenetics Publication Title: Heterochromatin boundaries are hotspots for de novo kinetochore formation. Publication Author List: Agata Olszak, Dominic van Essen, Antonio J. Pereira, Sarah Diehl, Thomas Manke, Helder Maiato, Simona Saccani and Patrick Heun
Project description:CID 70698683 is a novel broad-spectrum antiviral compound. To understand the broad-spectrum antiviral mechanism, the cellular gene expression changes by the treatment of CID70698683 was measured. HEp-2 cells grown in 6-well plates were treated with 5 microM of CID 70698683 for overnight and the cellular RNA was extracted (Treatment group). For control, DMSO was used instead of CID 70698683 (final concentration of 0.25%). Three replicates per group used.
Project description:Compound CID 3538206 inhibits yeast TORC1 activity and functionally mimic rapamycin. We used microarrays to compare the global gene expression with the treatment of CID 3528206 and rapamycin.