Project description:MeOH:water extracts of three types of green tea used as a training set for self-service metabolomics training in the Analytical Resources Core Mass Spectrometry Lab at CSU
Project description:The prevention or delay of brain senescence would enhance the quality of life for older persons. We investigated the effects of soybean extracts in senescence-accelerated (SAMP10) mice. This mouse is a model of brain senescence with a short life span, cerebral atrophy and cognitive dysfunction. Mice were fed a diet containing soybean extracts from 1 to 12 months of age. The effects of green and yellow soybean extracts were compared with a control diet without soybean extracts. Cognitive functions were higher in aged mice fed green soybean than age-matched control mice and mice fed yellow soybean. We further investigated transcriptome of the SAMP10 hippocampus indicated that expression levels of 36 genes were significantly higher and 19 genes were lower in mice that ingested green soybean than in mice that ingested yellow soybean. Some of the evidences were reconfirmed by real time PCR analysis; the levels of Cdh1 and Ptgds mRNA were significantly higher and that the level of Aplp1 was significantly lower in aged SAMP10 mice fed green soybean than mice ingested yellow soybean and control mice. Additionally, the amount of amyloid beta 40 and 42 was lower in the insoluble fraction of aged SAMP10 mice fed green soybean than control mice and mice fed yellow soybean, although the levels of amyloid beta 40 and 42 in the soluble fraction were not different. Lipocalin-type prostaglandin D2 synthase (L-PGDS) has been proposed as the endogenous amyloid beta - chaperone, suggesting that amyloid aggregation was lower in mice fed green soybean than control mice and mice fed yellow soybean. These results indicate that the intake of green soybean improved cognitive function in aged mice, and suppressed amyloid beta accumulation. Green soybean might help healthy aging of the brain in older persons.
Project description:The prevention or delay of brain senescence would enhance the quality of life for older persons. We investigated the effects of soybean extracts in senescence-accelerated (SAMP10) mice. This mouse is a model of brain senescence with a short life span, cerebral atrophy and cognitive dysfunction. Mice were fed a diet containing soybean extracts from 1 to 12 months of age. The effects of green and yellow soybean extracts were compared with a control diet without soybean extracts. Cognitive functions were higher in aged mice fed green soybean than age-matched control mice and mice fed yellow soybean. We further investigated transcriptome of the SAMP10 hippocampus indicated that expression levels of 36 genes were significantly higher and 19 genes were lower in mice that ingested green soybean than in mice that ingested yellow soybean. Some of the evidences were reconfirmed by real time PCR analysis; the levels of Cdh1 and Ptgds mRNA were significantly higher and that the level of Aplp1 was significantly lower in aged SAMP10 mice fed green soybean than mice ingested yellow soybean and control mice. Additionally, the amount of amyloid beta 40 and 42 was lower in the insoluble fraction of aged SAMP10 mice fed green soybean than control mice and mice fed yellow soybean, although the levels of amyloid beta 40 and 42 in the soluble fraction were not different. Lipocalin-type prostaglandin D2 synthase (L-PGDS) has been proposed as the endogenous amyloid beta - chaperone, suggesting that amyloid aggregation was lower in mice fed green soybean than control mice and mice fed yellow soybean. These results indicate that the intake of green soybean improved cognitive function in aged mice, and suppressed amyloid beta accumulation. Green soybean might help healthy aging of the brain in older persons. The effect of green and yellow soybean extracts on cognitive function in aged SAMP10 mice. Mice were fed a CE-2 diet containing 3.0% soybean extracts taken from both yellow and green soybean species, from 1 to 12 months of age. Total RNA was extracted from the stored hippocampus for DNA microarray analysis.
Project description:The interplay between pathogens and hosts has been studied for decades using targeted approaches such as the analysis of mutants and host immunological responses. Although much has been learned from such studies, they focus on individual pathways and fail to reveal the global effects of infection on the host. To alleviate this issue, high-throughput methods such as transcriptomics and proteomics have been used to study host-pathogen interactions. Recently, metabolomics was established as a new method to study changes in the biochemical composition of host tissues. We report a metabolomics study of Salmonella enterica serovar Typhimurium infection. We used Fourier Transform Ion Cyclotron Resonance Mass Spectrometry with Direct Infusion to reveal that dozens of host metabolic pathways are affected by Salmonella in a murine infection model. In particular, multiple host hormone pathways are disrupted. Our results identify unappreciated effects of infection on host metabolism and shed light on mechanisms used by Salmonella to cause disease, and by the host to counter infection. Female C57BL/6 mice were infected with Salmonella enterica serovar Typhimurium SL1344 cells by oral gavage. Feces and livers were collected and metabolites extracted using acetonitrile. For experiments with feces, samples were collected from 4 mice before and after infection. For liver experiments, 11 uninfected and 11 infected mice were used. Samples were combined into 3 groups of 3-4 mice each, resulting in the analysis of 3 group samples of uninfected and 3 of infected mice. Extracts were infused into a 12-T Apex-Qe hybrid quadrupole-FT-ICR mass spectrometer equipped with an Apollo II electrospray ionization source, a quadrupole mass filter and a hexapole collision cell. Raw mass spectrometry data were processed as described elsewhere (Han et al. 2008. Metabolomics. 4:128-140 [PMID 19081807]). To identify differences in metabolite composition between uninfected and infected samples, we filtered the list of masses for metabolites which were present on one set of samples but not the other. Additionally, we calculated the ratios between averaged intensities of metabolites from uninfected and infected mice. To assign possible metabolite identities, monoisotopic neutral masses of interest were queried against MassTrix (http://masstrix.org). Masses were searched against the Mus musculus database within a mass error of 3 ppm. Data were analyzed by unpaired t tests with 95% confidence intervals.
Project description:<p>The Metabolomics workshop on experimental and data analysis training for untargeted metabolomics was hosted by the Proteomics Society of India in December 2019. The Workshop included six tutorial lectures and hands-on data analysis training sessions presented by seven speakers. The tutorials and hands-on data analysis sessions focused on workflows for liquid chromatography-mass spectrometry (LC-MS) based on untargeted metabolomics. We review here three main topics from the workshop which were uniquely identified as bottlenecks for new researchers: a) experimental design, b) quality controls during sample preparation and instrumental analysis and c) data quality evaluation. Our objective here is to present common challenges faced by novice researchers and present possible guidelines and resources to address them. We provide resources and good practices for researchers who are at the initial stage of setting up metabolomics workflows in their labs.</p><p><br></p><p>Complete detailed metabolomics/lipidomics protocols are available online at <a href='https://www.embl.de/mcf/metabolomics-core-facility/protocols/index.html' rel='noopener noreferrer' target='_blank'>EMBL-MCF protocol</a> including <a href='https://www.embl.de/mcf/metabolomics-core-facility/video-tutorials/index.html' rel='noopener noreferrer' target='_blank'>video tutorials</a>.</p>
Project description:Nitrogen starvation is an efficient environmental pressure used to increase lipid accumulation and oil droplet formation in microalgal cells. Various studies focused on metabolic changes occurring in microalgae in nitrogen starvation conditions, but the mechanisms at the basis of these changes are not completely understood. Between microalgae, green algae, with more than 7000 species growing in a variety of habitats, have been frequently studied for energy purposes, but also as source of bioactive extracts/compounds. In this study, de novo transcriptome of the green algae Tetraselmis suecica has been performed in order to (1) deeply study its response to nitrogen starvation, (2) to look for enzymes with antioxidant capacity and for polyketide synthases (PKSs), (3) if present, to evaluate if nutrient starvation can influence their expression levels.