Project description:We aim to establish NAFLD model of Zebrafish. Zebrafish larvae fed with high cholesterol diet,high fructose diet and overfeed diet to induce liver steatosis. RNA-seq was employed to analyze the effects of different diets on NAFLD development.
Project description:Transcriptional profiling of 3dpf wild type zebrafish larvae treated with 20mM PTZ for 30 and 90 minutes compared with 3dpf wild type control untreated zebrafish larvae.
Project description:To understand the effects of Hsp60 deficiency in developing vertebrates, we generated CRISPR/Cas9-mediated hspd1 knockout zebrafish lines by targeting exon 2 to induce a frameshift mutation. We selected an allele with a 56 base pair deletion inducing a frameshift mutation leading to loss of protein functions. We examined the proteome changes in zebrafish larvae at 5 days post fertilization (DPF). Wildtype control and hspd1-/- larvae at 5dpf, were analyzed by TMT and nanoLC-MS/MS based proteomcis. For this purpose, we studied five pools from each genotype, and each pool consisted of five larvae.
Project description:In this work we investigated how the brain proteome of the larval zebrafish is modified by behavioral adaptation to the environmental challenge of a water vortex. We monitored the behavior of larvae and observed that they behaviorally adapted to the presence of a water vortex. We obtained the larval zebrafish brain proteome by extracting brains from zebrafish larvae and analyzing them using and LFQ-based LC-MS/MS-approach. In total we identified 5929 proteins in the larval brain. Within this proteome, we identified 57 proteins that were significantly regulated following experience of the water vortex: 41 proteins were up regulated and 16 were down regulated. Of these, 29 proteins are known to have neuronal functions, 17 proteins are known to have other cellular functions, and 11 proteins are still uncharacterized.
Project description:Transcriptional profiling of zebrafish larvae comparing control with AgNO3 or AgNPs exposed zebrafish larvae. Three-condition experiment, Control vs. AgNO3 and Control vs. AgNPs exposed zebrafish. Biological replicates: 6 control replicates, 6 AgNO3 replicates and 6 AgNPs replicates.
Project description:Chronic high sugar feeding induces obesity, hyperglycemia, and insulin resistance in flies and mammals. To gain insight into the mechanisms underlying this response, we profiled gene expression in chronically high sugar fed, wandering (post-prandial) third instar wild type larvae (L3). These data were compared to control-fed larvae as well as those (mid-L3) actively feeding for twelve hours on both diets. We used microarrays to detail the response of Drosophila larvae to high sugar-induced insulin resistance.
Project description:Zebrafish were fed IROA labelled nematodes (smaple 1-4); In a second experiment, zebrafish larvae were exposed to DEHP, a chemical that is a suspected obesogen.