Project description:Current proteomic approaches disassemble and digest nucleosome particles, blurring readouts of the ‘histone code’. To preserve nucleosome-level information, we developed Nuc-MS, which displays the landscape of histone variants and their post-translational modifications (PTMs) in a single mass spectrum. Combined with immunoprecipitation, Nuc-MS quantified nucleosome co-occupancy of histone H3.3 with variant H2A.Z (sixfold over bulk) and the co-occurrence of oncogenic H3.3K27M with euchromatic marks (for example, a >15-fold enrichment of dimethylated H3K79me2). Nuc-MS is highly concordant with chromatin immunoprecipitation-sequencing (ChIP-seq) and offers a new readout of nucleosome-level biology.
Project description:Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, unlabeled mapping of analytes from tissue sections. However, further work is needed to improve sensitivity and depth of coverage for protein and peptide IMS. Laser-based post-ionization MALDI-2 has been shown to increase sensitivity for several molecular classes but has not yet been reported for peptides. We demonstrate signal enhancement of proteolytic peptides from thin tissue sections of human kidney by conventional MALDI (termed MALDI-1), and conventional MALDI augmented using a second ionizing laser (termed MALDI-2). Proteins were digested in situ using trypsin prior to IMS analysis. For tentative identification of peptides and proteins, a tissue homogenate from the same tissue analyzed by IMS was analyzed by LC-MS/MS. These proteins were digested in silico to generate a database of theoretical peptides to then match to MALDI IMS datasets. Peptides were tentatively identified by matching the MALDI peak list to the database peptide list employing a 5 ppm error window. This resulted in 314 ± 45 (n=3) peptides and 1 112 ± 84 (n=3) peptides for MALDI-1 and MALDI-2, respectively. Protein identifications requiring two or more peptides per protein resulted in 55 ± 13 proteins identifications with MALDI-1 and 205 ± 10 with MALDI-2. These results demonstrate that MALDI-2 provides enhanced sensitivity for the spatial mapping of tryptic peptides and significantly increases the number of proteins identified in IMS experiments.