Outer membrane vesicles and the outer membrane protein OmpU govern Vibrio cholerae biofilm matrix assembly
Ontology highlight
ABSTRACT: Biofilms are matrix-encased microbial communities that increase the environmental fitness and infectivity of many human pathogens including Vibrio cholerae. Biofilm matrix assembly is essential for biofilm formation and function. Known components of the V. cholerae biofilm matrix are the polysaccharide VPS, matrix proteins RbmA, RbmC, Bap1, and extracellular DNA, but the majority of the protein composition is uncharacterized. This study comprehensively analyzed the biofilm matrix proteome and revealed the presence of outer membrane proteins (OMPs). Outer membrane vesicles (OMVs) were also present in the V. cholerae biofilm matrix and were associated with OMPs and many biofilm matrix proteins suggesting that they participate in biofilm matrix assembly. Consistent with this, OMVs had the capability to alter biofilm structural properties depending on their composition. OmpU was the most prevalent OMP in the matrix, and its absence altered biofilm architecture by increasing VPS production. Using single-cell force spectroscopy, we further showed that OmpU, the matrix proteins RbmA, RbmC, and Bap1, and VPS contribute to cell-surface adhesion forces, which are critical for biofilm formation. Our findings provide new insights into the molecular mechanisms underlying biofilm matrix assembly in V. cholerae, which may open up new opportunities to develop inhibitors that specifically alter biofilm matrix properties and, thus, affect either the environmental survival or pathogenesis of Vibrio cholerae.
INSTRUMENT(S): timsTOF Pro 2
ORGANISM(S): Vibrio Cholerae (ncbitaxon:666)
SUBMITTER: Fitnat H. Yildiz
PROVIDER: MSV000092446 | MassIVE | Fri Jul 14 12:08:00 BST 2023
SECONDARY ACCESSION(S): PXD043793
REPOSITORIES: MassIVE
ACCESS DATA