Project description:Glis3 is expressed in pancreatic beta and PP cells. To identify down stream target genes of Glis3, we performed microarray analysis using pancreas total RNAs from 1 week-old WT and Glis3KO2 mice. insulin and pancreatic polypeptide (Ppy) was significantly decreased together with several other β cell markers, Glut2 and MafA by microarray analysis. Immunohistochemistry, QRT-PCR, and transmission electron microscopy indicated that postnatal Glis3KO2 pancreas still contains a large population of β cells that express Pdx-1, Nkx6.1, and Isl-1; however, insulin production and secretory granules were greatly reduced in these cells. In addition, chromogranin A (ChgA) and Urocortin 3, which are associated with mature β cells, was dramatically decreased in Glis3KO2 pancreas. These observations suggest that Glis3 plays a critical role in the maturation of pancreatic β cell phenotype. Pancreatic total RNAs were purified from 4 WT and 4 Glis3KO2 at 1 week old age. Then the samples were applied to Agilent mouse genome chip.
Project description:The goal of this review was to seek a better understanding of the function and differential expression of circadian clock genes during the reproductive process. Through a discussion of how the circadian clock is involved in these steps, the identification of new clinical targets for sleep disorder-related diseases, such as reproductive failure, will be elucidated. Here, we focus on recent research findings regarding circadian clock regulation within the reproductive system, shedding new light on circadian rhythm-related problems in women. Discussions on the roles that circadian clock plays in these reproductive processes will help identify new clinical targets for such sleep disorder-related diseases.
Project description:Glis3 is expressed in pancreatic beta and PP cells. To identify down stream target genes of Glis3, we performed microarray analysis using pancreas total RNAs from 1 week-old WT and Glis3KO2 mice. insulin and pancreatic polypeptide (Ppy) was significantly decreased together with several other β cell markers, Glut2 and MafA by microarray analysis. Immunohistochemistry, QRT-PCR, and transmission electron microscopy indicated that postnatal Glis3KO2 pancreas still contains a large population of β cells that express Pdx-1, Nkx6.1, and Isl-1; however, insulin production and secretory granules were greatly reduced in these cells. In addition, chromogranin A (ChgA) and Urocortin 3, which are associated with mature β cells, was dramatically decreased in Glis3KO2 pancreas. These observations suggest that Glis3 plays a critical role in the maturation of pancreatic β cell phenotype.
Project description:BackgroundSkipping breakfast is associated with dysmenorrhea in young women. This suggests that the delay of food intake in the active phase impairs uterine functions by interfering with circadian rhythms.ObjectivesTo examine the relation between the delay of feeding and uterine circadian rhythms, we investigated the effects of the first meal occasion in the active phase on the uterine clock.MethodsZeitgeber time (ZT) was defined as ZT0 (08:45) with lights on and ZT12 (20:45) with lights off. Young female mice (8 wk of age) were divided into 3 groups: group I (ad libitum consumption), group II (time-restricted feeding during ZT12-16, initial 4 h of the active period), and group III (time-restricted feeding during ZT20-24, last 4 h of the active period, a breakfast-skipping model). After 2 wk of dietary restriction, mice in each group were killed at 4-h intervals and the expression profiles of uterine clock genes, Bmal1 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1), Per1 (period circadian clock 1), Per2, and Cry1 (cryptochrome 1), were examined.ResultsqPCR and western blot analyses demonstrated synchronized circadian clock gene expression within the uterus. Immunohistochemical analysis confirmed that BMAL1 protein expression was synchronized among the endometrium and myometrium. In groups I and II, mRNA expression of Bmal1 was elevated after ZT12 at the start of the active phase. In contrast, Bmal1 expression was elevated just after ZT20 in group III, showing that the uterine clock rhythm had shifted 8 h backward. The changes in BMAL1 protein expression were confirmed by western blot analysis.ConclusionsThis study is the first to indicate that time-restricted feeding regulates a circadian rhythm of the uterine clock that is synchronized throughout the uterine body. These findings suggest that the uterine clock system is a new candidate to explain the etiology of breakfast skipping-induced uterine dysfunction.
Project description:Mammalian circadian clocks have a hierarchical organization, governed by the suprachiasmatic nucleus (SCN) in the hypothalamus. The brain itself contains multiple loci that maintain autonomous circadian rhythmicity, but the contribution of the non-SCN clocks to this hierarchy remains unclear. We examine circadian oscillations of clock gene expression in various brain loci and discovered that in mouse, robust, higher amplitude, relatively faster oscillations occur in the choroid plexus (CP) compared to the SCN. Our computational analysis and modeling show that the CP achieves these properties by synchronization of "twist" circadian oscillators via gap-junctional connections. Using an in vitro tissue coculture model and in vivo targeted deletion of the Bmal1 gene to silence the CP circadian clock, we demonstrate that the CP clock adjusts the SCN clock likely via circulation of cerebrospinal fluid, thus finely tuning behavioral circadian rhythms.
Project description:Photosynthesis in chloroplasts during the day and mitochondrial respiration during the night execute nearly opposing reactions that are coordinated with the internal cellular status and the external conditions. Here, we describe a mechanism by which the Arabidopsis clock component TIMING OF CAB EXPRESSION1 (TOC1) contributes to the diurnal regulation of metabolism. Proper expression of TOC1 is important for sustaining cellular energy and for the diel and circadian oscillations of sugars, amino acids and tricarboxylic acid (TCA) cycle intermediates. TOC1 binds to the promoter of the TCA-related gene FUMARASE 2 to repress its expression at night, which results in decreased fumarate accumulation in TOC1 over-expressing plants and increased in toc1-2 mutant. Genetic interaction studies confirmed that over-expression of FUMARASE 2 in TOC1 over-expressing plants alleviates the molecular and physiological energy-deprivation phenotypes of TOC1 over-expressing plants. Thus, we propose that the tandem TOC1-FUMARASE 2 is one of the mechanisms that contribute to the regulation of plant metabolism during the day and night.
Project description:Congenital and developmental craniofacial deformities often cause bone defects, misalignment, and soft tissue asymmetry, which can lead to facial function and morphologic abnormalities, especially among children born with cleft lip and palate. Joint efforts from oral maxillofacial surgery, oral implantology, and cosmetic surgery are often required for diagnosis and treatment. As one of the most widely performed treatment methods, implant-supported cranio-maxillofacial prostheses have been widely applied in the course of treatment. Therefore, stability of peri-implant bone tissue is crucial for the long-term success of treatment and patients' quality of life. The circadian clock component brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) was found to be involved in the cell fate of bone marrow mesenchymal stem cells, which were essential in the fixation of titanium implants. This study aimed to investigate the effect of BMAL1 on osteogenesis in osseointegration, providing a brand new solution to increase bone implant conjunction efficiency and implant stability, paving the way for a long-term satisfactory therapy outcome.
Project description:In mammals, circadian clocks are strictly suppressed during early embryonic stages, as well as in pluripotent stem cells, by the lack of CLOCK/BMAL1-mediated circadian feedback loops. During ontogenesis, the innate circadian clocks emerge gradually at a late developmental stage, and with these, the circadian temporal order is invested in each cell level throughout a body. Meanwhile, in the early developmental stage, a segmented body plan is essential for an intact developmental process, and somitogenesis is controlled by another cell-autonomous oscillator, the segmentation clock, in the posterior presomitic mesoderm (PSM). In the present study, focusing upon the interaction between circadian key components and the segmentation clock, we investigated the effect of the CLOCK/BMAL1 on the segmentation clock Hes7 oscillation, revealing that the expression of functional CLOCK/BMAL1 severely interferes with the ultradian rhythm of segmentation clock in induced PSM and gastruloids. RNA sequencing analysis implied that the premature expression of CLOCK/BMAL1 affects the Hes7 transcription and its regulatory pathways. These results suggest that the suppression of CLOCK/BMAL1-mediated transcriptional regulation during the somitogenesis may be inevitable for intact mammalian development.
Project description:The mechanisms by which clock neurons in the Drosophila brain confer an ?24-hr rhythm onto locomotor activity are unclear, but involve the neuropeptide diuretic hormone 44 (DH44), an ortholog of corticotropin-releasing factor. Here we identified DH44 receptor 1 as the relevant receptor for rest:activity rhythms and mapped its site of action to hugin-expressing neurons in the subesophageal zone (SEZ). We traced a circuit that extends from Dh44-expressing neurons in the pars intercerebralis (PI) through hugin+ SEZ neurons to the ventral nerve cord. Hugin neuropeptide, a neuromedin U ortholog, also regulates behavioral rhythms. The DH44 PI-Hugin SEZ circuit controls circadian locomotor activity in a daily cycle but has minimal effect on feeding rhythms, suggesting that the circadian drive to feed can be separated from circadian locomotion. These findings define a linear peptidergic circuit that links the clock to motor outputs to modulate circadian control of locomotor activity.
Project description:Circadian clocks in mammals are built on a negative feedback loop in which the heterodimeric transcription factor circadian locomotor output cycles kaput (CLOCK)-brain, muscle Arnt-like 1 (BMAL1) drives the expression of its own inhibitors, the PERIOD and CRYPTOCHROME proteins. Reactivation of CLOCK-BMAL1 occurs at a specific time several hours after PERIOD and CRYPTOCHROME protein turnover, but the mechanism underlying this process is unknown. We found that mouse BMAL1 complexes include TRAP150 (thyroid hormone receptor-associated protein-150; also known as THRAP3). TRAP150 is a selective coactivator for CLOCK-BMAL1, which oscillates under CLOCK-BMAL1 transcriptional control. TRAP150 promotes CLOCK-BMAL1 binding to target genes and links CLOCK-BMAL1 to the transcriptional machinery at target-gene promoters. Depletion of TRAP150 caused low-amplitude, long-period rhythms, identifying it as a positive clock element. The activity of TRAP150 defines a positive feedback loop within the clock and provides a potential mechanism for timing the reactivation of circadian transcription.