Comparative seed proteome profile reveals no alternation of major allergens of high yielding mung bean cultivars
Ontology highlight
ABSTRACT: Mung bean contains up to 25% of the protein, is one of the great sources of plant-based protein. Since many allergens also function as defense-related proteins, it is important to determine their abundance level in the high-yielding disease-resistant cultivars. In this study, for the first time, we compared the seed proteome of disease-resistant high-yielding mung bean cultivars developed by conventional breeding approach. Using label-free quantitative proteomic platform, we successfully identified and quantified a total of 1373 proteins. Comparative analysis between the high-yielding disease-resistant cultivar (MC5) and other three cultivars showed a total of 69 proteins were significantly altered in abundance and overlapped across the cultivars. Subsequent bioinformatic analysis of these altered proteins demonstrated that PDF1 (a defensin-like protein) exhibited high sequence similarity and epitope matching with the established peanut allergens (Ara h 12 and 13), indicating a potential mung bean allergen. Conversely, known mung bean allergen proteins such as Vig r 2, Vig r 4, LTP1, PR2, beta-Conglycinin, and Glycinin G4 showed no alternation in the MC5 compared to other cultivars. Taken together, our findings suggest that the known allergen profiles may not be impacted by the conventional plant breeding method to develop improved mung bean cultivars.
INSTRUMENT(S): Q Exactive HF-X
ORGANISM(S): Vigna Radiata (ncbitaxon:157791)
SUBMITTER: Nagib Ahsan
PROVIDER: MSV000093895 | MassIVE | Fri Jan 19 15:42:00 GMT 2024
REPOSITORIES: MassIVE
ACCESS DATA