Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response; coral bleaching 5 control and 5 heat-stressed RNA samples were hybridized in a 5-replicate dye-swap design (10 total hyb's).
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response, time course, coral bleaching
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response; coral bleaching
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response, time course, coral bleaching Time course with 4 time points and 4 biological replicates per time point. Each biological replicate at each time point was hybridized to a pooled reference control sample containing RNA from all control non-heat-stressed coral fragments.
Project description:Sponges are efficient filter feeders, removing significant portions of particulate and dissolved organic matter (POM, DOM) from the water column. While the assimilation and respiration of POM and DOM by sponges and their abundant microbial symbiont communities have received much attention, there is virtually no information on the impact of sponge holobiont metabolism on the composition of DOM at a molecular-level. We applied untargeted and targeted metabolomics techniques to characterize DOM in seawater samples prior to entering the sponge (inhalant reef water), in samples exiting the sponge (exhalent seawater), and in samples collected just outside the reef area (off reef seawater). Samples were collected from two sponge species, Ircinia campana and Spheciospongia vesparium, on a near-shore hard bottom reef in the Florida Keys. Metabolic profiles generated from untargeted metabolomics analysis indicated that many more compounds were enhanced in the exhalent samples than in the inhalant samples. Targeted metabolomics analysis revealed differences in diversity and concentration of metabolites between exhalent and off reef seawater. For example, most of the nucleosides were enriched in the exhalent seawater, while the aromatic amino acids, caffeine and the nucleoside xanthosine were elevated in the off reef water samples. Although the metabolic profile of the exhalent seawater was unique, the impact of sponge metabolism on the overall reef DOM profile was spatially limited in our study. There were also no significant differences in the metabolic profiles of exhalent water between the two sponge species, potentially indicating that there is a characteristic DOM profile in the exhalent seawater of Caribbean sponges. Additional work is needed to determine whether the impact of sponge DOM is greater in habitats with higher sponge cover and diversity. This work provides the first insight into the molecular-level impact of sponge holobiont metabolism on reef DOM and establishes a foundation for future experimental studies addressing the influence of sponge-derived DOM on chemical and ecological processes in coral reef ecosystems.