Project description:The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid metabolism, concomitant with altered plasma and/or fecal metabolite concentrations. Adipose tissue gene expression of oxidative pathways was upregulated by antibiotics, whereas immune-related pathways were downregulated by vancomycin. Antibiotics did not affect tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial hormones and metabolites, systemic inflammation, gut permeability, and adipocyte size. Importantly, energy harvest, adipocyte size, and whole-body insulin sensitivity were not altered at 8-week follow-up, despite a still considerably altered microbial composition, indicating that interference with adult microbiota by 7-day antibiotic treatment has no clinically relevant impact on metabolic health in obese humans. This randomized, placebo-controlled, double-blind study had a 3-armed parallel design. Overweight/obese participants were randomized to oral intake of amoxicillin, vancomycin or placebo for 7 consecutive days. After an overnight fast, subcutaneous adipose tissue biopsies were taken that were subjected to gene expression profiling by array.
Project description:The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid metabolism, concomitant with altered plasma and/or fecal metabolite concentrations. Adipose tissue gene expression of oxidative pathways was upregulated by antibiotics, whereas immune-related pathways were downregulated by vancomycin. Antibiotics did not affect tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial hormones and metabolites, systemic inflammation, gut permeability, and adipocyte size. Importantly, energy harvest, adipocyte size, and whole-body insulin sensitivity were not altered at 8-week follow-up, despite a still considerably altered microbial composition, indicating that interference with adult microbiota by 7-day antibiotic treatment has no clinically relevant impact on metabolic health in obese humans.
Project description:Current treatments for chronic diarrhea have limited efficacy and several side effects. Probiotics have the potential to alleviate symptoms of diarrhea. This randomized, double-blind, placebo-controlled trial evaluates the effects of administering the probiotic Lactiplantibacillus plantarum P9 (P9) strain in young adults with chronic diarrhea (Clinical Trial Registration Number: ChiCTR2000038410). The intervention period lasts for 28 days, followed by a 14-day post-intervention period. Participants are randomized into the P9 (n = 93) and placebo (n = 96) groups, with 170 individuals completing the double-blind intervention phase (n = 85 per group). The primary endpoint is the diarrhea symptom severity score. Both intention-to-treat (n = 189) and per-protocol (n = 170) analyses reveal a modest yet statistically significant reduction in diarrhea severity compared to the placebo group (20.0%, P = 0.050; 21.4%, P = 0.048, respectively). In conclusion, the results of this study support the use of probiotics in managing chronic diarrhea in young adults. However, the lack of blood parameter assessment and the short intervention period represent limitations of this study.
Project description:Background and aims: Gene mutations or variants leading to insufficient reactive oxygen species (ROS) production have been associated with inflammatory bowel disease (IBD). In particular, 40-50% of patients with chronic granulomatous disease have IBD (CGD-IBD). CGD is caused by inherited defects in any one of the 5 subunits forming the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived ROS production. While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection in this immune compromised population. Understanding the impact of NOX2 defects on the composition and function of the intestinal microbiota may lead to the identification of treatments for CGD-IBD. Methods: We evaluated GI symptom and quality of life scores, and clinical biomarkers of local (i.e. fecal occult blood and calprotectin) and systemic (i.e. CBC, CRP, ESR, and albumin) inflammation in a cohort of 79 patients with CGD, 8 mutation carriers and 17 healthy controls followed at the National Institutes of Health (NIH). We profiled the intestinal microbiome by 16S rRNA (V4 region) sequencing and the stool metabolome by mass spectrometry in all fecal samples, and further validated our findings by profiling the stool microbiome in a second cohort of 36 patients with CGD recruited from 11 centers across North-America through the Primary Immune Deficiency Treatment Consortium (PIDTC). Predictive functional profiling of the microbial communities based on 16S rRNA sequencing was also performed. Results: After controlling for significant variables, we show decreased alpha diversity and identified distinct intestinal microbiome and metabolomic profiles in patients with CGD compared to healthy individuals. In particular, we observed enrichment for Erysipelatoclostridium spp., Sellimonas spp. and Lachnoclostridium spp. in stool samples from patients with CGD. Despite differences in alpha and beta diversity in samples from the NIH compared to the PIDTC cohort, there were several bacterial taxa that correlated significantly between both cohorts. We further demonstrate that patients with active IBD and/or a history of IBD have a distinct microbiome and metabolomic profile compared to patients without CGD-IBD and identified bacterial taxa to be evaluated as potential markers of disease severity, as well as targets for future therapeutic interventions. Conclusions: Intestinal microbiome and metabolomic signatures distinguished patients with CGD and CGD-IBD and identified microbial and metabolomic candidates to be further evaluated as potential targets to improve the management of patients with CGD-IBD.
Project description:Colon cancer onset and progression is strongly associated with the presence, absence, or relative abundances of certain microbial taxa in the gastrointestinal tract. However, specific mechanisms affecting disease susceptibility related to complex bacterial mixtures are poorly understood. We used a multi-omics approach to determine how differences in the complex gut microbiome (GM) influence the metabolome and host transcriptome and ultimately affect susceptibility to adenoma development. Fecal samples collected from Pirc rats harboring two distinct complex GMs were analyzed using ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS). We identified putative metabolite profiles that predicted future disease severity from samples collected prior to observable disease onset. Transcriptome analyses performed after disease onset on normal epithelium and tumor tissues suggests that the GM also alters the host transcriptome. Integrated pathway (IP) analyses of the metabolome and transcriptome based on putatively identified metabolic features indicate that bile acid biosynthesis was enriched in rats with high tumors (GM:F344) along with increased fatty acid metabolism and mucin biosynthesis. These data emphasize the utility of using untargeted metabolomics to identify metabolites for revealing signatures of susceptibility and resistance.
Project description:The goal of this study was to compare Next Generation mRNA (RNA-seq) data obtained from whole kidney tissue from WT and untreated, Ramipril treated, and Ramipril/Empagliflozin treated, and Ramipril/Empagliflozin/Finerenone treated Col4a3-/- mice in the 129/SvJ background.