In vivo and in vitro analysis of the role of the Prc protease in inducing mucoidy in Pseudomonas aeruginosa
Ontology highlight
ABSTRACT: In Pseudomonas aeruginosa,alginate biosynthesis gene expression is inhibited by the transmembrane anti-sigma factor MucA, which sequesters the AlgU sigma factor. Cell envelope stress initiates cleavage of the MucA periplasmic domain by site-1 protease AlgW, followed by further MucA degradation to release AlgU. However, after colonizing the lungs of people with cystic fibrosis,P. aeruginosa converts to a mucoid form that produces alginate constitutively. Mucoid isolates often have mucA mutations, with the most common being mucA22, which truncates the periplasmic domain. MucA22 is degraded constitutively, and genetic studies suggested that the Prc protease is responsible. Some studies also suggested that Prc contributes to induction in strains with wild type MucA, whereas others suggested the opposite. However, missing from all previous studies is a demonstration that Prc cleaves any protein directly, which leaves open the possibility that the effect of a prc null mutation is indirect. To address the ambiguities and shortfalls, we reevaluated the roles of AlgW and Prc as MucA and MucA22 site-1 proteases. In vivo analyses using three different assays, and two different inducing conditions, all suggested that AlgW is the only site-1 protease for wild type MucA in any condition. In contrast, genetics suggested that AlgW or Prc act as MucA22 site-1 proteases in inducing conditions, whereas Prc is the only MucA22 site-1 protease in non-inducing conditions. For the first time, we also show that Prc is unable to degrade the periplasmic domain of wild type MucA, but does degrade the mutated periplasmic domain of MucA22 directly. The mass spectrometric data in support of some of these findings are included here.
INSTRUMENT(S): timsTOF HT
ORGANISM(S): Pseudomonas Aeruginosa (ncbitaxon:287)
SUBMITTER: Beatrix Ueberheide
PROVIDER: MSV000095558 | MassIVE | Thu Aug 08 12:26:00 BST 2024
SECONDARY ACCESSION(S): PXD054724
REPOSITORIES: MassIVE
ACCESS DATA