Metabolomics

Dataset Information

0

Serum metabolomic profiles identify ER-positive early breast cancer patients at increased risk of disease recurrence in a multicentre population


ABSTRACT:

PURPOSE: Detecting signals of micrometastatic disease in early breast cancer (EBC) patients could improve risk stratification and allow better tailoring of adjuvant therapies. We have previously shown that postoperative serum metabolomic profiles are predictive of relapse in a single-centre cohort of ERnegative EBC patients. Here, we investigated this further using pre-operative serum samples from ER-positive, premenopausal women with EBC who were enrolled in an international phase III trial.

METHODS: Proton nuclear magnetic resonance (NMR) spectroscopy of 590 EBC samples (319 with relapse or =6 years clinical follow up) and 109 metastatic breast cancer (MBC) samples was performed. A Random Forest (RF) classification model was built using a training set of 85 EBC and all MBC samples. The model was then applied to a test set of 234 EBC samples, and a risk of recurrence score was generated based on the likelihood of the sample being misclassified as metastatic.

RESULTS: In the training set, the RF model separated EBC from MBC with discrimination accuracy of 84.9%. In the test set, the RF recurrence risk score correlated with relapse, with an area under the curve of 0.747 in receiver operator characteristics analysis. Accuracy was maximised at 71.3% (sensitivity 70.8%, specificity 71.4%). The model performed independently of age, tumor size, grade, HER2 status and nodal status, and also of AdjuvantOnline risk of relapse score.

CONCLUSIONS: In a multicentre group of EBC patients, we developed a model based on preoperative serum metabolomic profiles that was prognostic for disease recurrence, independent of traditional clinicopathological risk factors.

INSTRUMENT(S): Bruker

SUBMITTER: veronica ghini 

PROVIDER: MTBLS424 | MetaboLights | 2017-03-02

REPOSITORIES: MetaboLights

Dataset's files

Source:
Action DRS
MTBLS424 Other
FILES Other
a_MTBLS424_breast_cancer_metabolite_profiling_NMR_spectroscopy.txt Txt
files-all.json Other
i_Investigation.txt Txt
Items per page:
1 - 5 of 7
altmetric image

Publications

Serum Metabolomic Profiles Identify ER-Positive Early Breast Cancer Patients at Increased Risk of Disease Recurrence in a Multicenter Population.

Hart Christopher D CD   Vignoli Alessia A   Tenori Leonardo L   Uy Gemma Leonora GL   Van To Ta T   Adebamowo Clement C   Hossain Syed Mozammel SM   Biganzoli Laura L   Risi Emanuela E   Love Richard R RR   Luchinat Claudio C   Di Leo Angelo A  

Clinical cancer research : an official journal of the American Association for Cancer Research 20170112 6


<b>Purpose:</b> Detecting signals of micrometastatic disease in patients with early breast cancer (EBC) could improve risk stratification and allow better tailoring of adjuvant therapies. We previously showed that postoperative serum metabolomic profiles were predictive of relapse in a single-center cohort of estrogen receptor (ER)-negative EBC patients. Here, we investigated this further using preoperative serum samples from ER-positive, premenopausal women with EBC who were enrolled in an inte  ...[more]

Similar Datasets

2009-12-02 | E-GEOD-17537 | biostudies-arrayexpress
2009-12-02 | E-GEOD-17536 | biostudies-arrayexpress
2009-11-14 | GSE17536 | GEO
2009-11-14 | GSE17537 | GEO
2022-12-27 | PXD032899 | Pride
2014-11-13 | E-GEOD-62116 | biostudies-arrayexpress
2024-04-23 | GSE149226 | GEO
2005-10-31 | E-SMDB-2486 | biostudies-arrayexpress
2013-06-23 | E-GEOD-47109 | biostudies-arrayexpress
2011-09-02 | GSE30929 | GEO