Metabolomics

Dataset Information

0

Metabolomics revealed the influence of breast cancer on lymphatic endothelial cell metabolism, metabolic crosstalk, and lymphangiogenic signaling in co-culture


ABSTRACT:

Breast cancer metastasis occurs via blood and lymphatic vessels. Breast cancer cells 'educate' lymphatic endothelial cells (LECs) to support tumor vascularization and growth. However, despite known metabolic alterations in breast cancer, it remains unclear how lymphatic endothelial cell metabolism is altered in the tumor microenvironment and its effect in lymphangiogenic signaling in LECs. We analyzed metabolites inside LECs in co-culture with MCF-7, MDA-MB-231, and SK-BR-3 breast cancer cell lines using 1H nuclear magnetic resonance (NMR) metabolomics, Seahorse, and the spatial distribution of metabolic co-enzymes using optical redox ratio imaging to describe breast cancer-LEC metabolic crosstalk. LECs co-cultured with breast cancer cells exhibited cell-line dependent altered metabolic profiles, including significant changes in lactate concentration in breast cancer co-culture. Cell metabolic phenotype analysis using Seahorse showed LECs in co-culture exhibited reduced mitochondrial respiration, increased reliance on glycolysis and reduced metabolic flexibility. Optical redox ratio measurements revealed reduced NAD(P)H levels in LECs potentially due to increased NAD(P)H utilization to maintain redox homeostasis. 13C-labeled glucose experiments did not reveal lactate shuttling into LECs from breast cancer cells, yet showed other 13C signals in LECs suggesting internalized metabolites and metabolic exchange between the two cell types. We also determined that breast cancer co-culture stimulated lymphangiogenic signaling in LECs, yet activation was not stimulated by lactate alone. Increased lymphangiogenic signaling suggests paracrine signaling between LECs and breast cancer cells which could have a pro-metastatic role.

INSTRUMENT(S): Bruker

SUBMITTER: Suehelay Acevedo 

PROVIDER: MTBLS859 | MetaboLights | 2024-06-25

REPOSITORIES: MetaboLights

Dataset's files

Source:
Action DRS
MTBLS859 Other
FILES Other
a_MTBLS859_lec_metabolomics_metabolite_profiling_NMR_spectroscopy-1.txt Txt
a_MTBLS859_lec_metabolomics_metabolite_profiling_NMR_spectroscopy.txt Txt
i_Investigation.txt Txt
Items per page:
1 - 5 of 8
altmetric image

Publications

Metabolomics revealed the influence of breast cancer on lymphatic endothelial cell metabolism, metabolic crosstalk, and lymphangiogenic signaling in co-culture.

Acevedo-Acevedo Suehelay S   Millar Douglas C DC   Simmons Aaron D AD   Favreau Peter P   Cobra Paulo F PF   Skala Melissa M   Palecek Sean P SP  

Scientific reports 20201204 1


Breast cancer metastasis occurs via blood and lymphatic vessels. Breast cancer cells 'educate' lymphatic endothelial cells (LECs) to support tumor vascularization and growth. However, despite known metabolic alterations in breast cancer, it remains unclear how lymphatic endothelial cell metabolism is altered in the tumor microenvironment and its effect in lymphangiogenic signaling in LECs. We analyzed metabolites inside LECs in co-culture with MCF-7, MDA-MB-231, and SK-BR-3 breast cancer cell li  ...[more]

Similar Datasets

2016-02-12 | PXD003048 | Pride
2018-06-22 | E-MTAB-6855 | biostudies-arrayexpress
| PRJNA422897 | ENA
2018-06-04 | PXD008719 | Pride
2022-06-04 | GSE205243 | GEO
2009-10-01 | GSE16705 | GEO
2020-08-17 | E-MTAB-9485 | biostudies-arrayexpress
2021-09-09 | GSE183551 | GEO
2019-08-20 | GSE118342 | GEO
2017-12-27 | GSE97997 | GEO