Ontology highlight
ABSTRACT: The central nervous system has been implicated in the age-induced reduction in adipose tissue lipolysis. SLC7A14 is a lysosomal membrane protein highly expressed in the brain. Herein, we investigated the possible role of hypothalamic SLC7A14 in the age-induced lipolysis reduction. In this study, we demonstrated the expression of SLC7A14 was reduced in proopiomelanocortin (POMC) neurons of aged mice. Overexpression of SLC7A14 in POMC neurons alleviated the age-induced reduction in white adipose tissue (WAT) lipolysis, whereas SLC7A14 deletion mimicked the age-induced lipolysis impairment. Moreover, POMC SLC7A14 regulated WAT lipolysis independently of sympathetic nerves in WAT. Metabolomics analysis revealed that POMC SLC7A14 increased the primary bile acid taurochenodeoxycholic acid (TCDCA) content, which mediated the SLC7A14 knockout- or age-induced WAT lipolysis impairment. Furthermore, SLC7A14-increased TCDCA content is dependent on intestinal apical sodium-dependent bile acid transporter (ASBT), which is regulated by intestinal sympathetic afferent nerves. Finally, SLC7A14 regulated the intestinal sympathetic afferent nerves by inhibiting mTORC1 signaling through inhibiting TSC1 phosphorylation. Collectively, our study suggests the function for central SLC7A14 and an upstream mechanism for the mTORC1 signaling pathway. Moreover, our data provides insights into the brain-gut-adipose tissue crosstalk in age-induced lipolysis impairment.
INSTRUMENT(S): Liquid Chromatography MS - negative - reverse phase
SUBMITTER: Kan Liu
PROVIDER: MTBLS9872 | MetaboLights | 2024-07-23
REPOSITORIES: MetaboLights
Items per page: 5 1 - 5 of 6 |