Project description:PurposeHuman aqueous humor (hAH) provides nutrition and immunity within the anterior chamber of the eye. Characterization of the protein composition of hAH will identify molecules involved in maintaining a homeostatic environment for anterior segment tissues. The present study was conducted to analyze the proteome of hAH.MethodshAH samples obtained during elective cataract surgery were divided into three matched groups and immunodepleted of albumin, IgG, IgA, haploglobin, antitrypsin, and transferrin. Reduced and denatured proteins (20 μg) from each group were separated by gel electrophoresis. Thirty-three gel slices were excised from each of three gel lanes (n = 99), digested with trypsin, and subjected to nanoflow liquid chromatography electrospray ionization tandem mass spectrometry (nano-LC-ESI-MS/MS). The protein component of hAH was also analyzed by antibody-based protein arrays, and selected proteins were quantified.ResultsA total of 676 proteins were identified in hAH. Of the 355 proteins identified by nano-LC-ESI-MS/MS, 206 were found in all three groups. Most of the proteins identified by nano-LC-ESI-MS/MS had catalytic, enzymatic, and structural properties. Using antibody-based protein arrays, 328 cytokines, chemokines, and receptors were identified. Most of the quantified proteins had concentrations that ranged between 0.1 and 2.5 ng/mL. Ten proteins were identified by both nano-LC-ESI-MS/MS and antibody protein arrays.ConclusionsProteomic analysis of hAH identified 676 nonredundant proteins. More than 80% of these proteins are novel identifications. The elucidation of the aqueous proteome will establish a foundation for protein function analysis and identification of differentially expressed markers associated with diseases of the anterior segment.
Project description:In order to determine the possible aqueous humor (AH) proteins involved in diabetic nephropathy (DN) progression, we performed gel electrophoresis-liquid chromatography-tandem mass spectrometry protein profiling of AH samples from 5 patients with proliferative diabetic retinopathy (PDR) combined DN and 5 patients with PDR. Function enrichment analyses were carried out after the identification of differentially expressed proteins (DEPs). Protein-protein interaction networks were then built and the Search Tool for the Retrieval of Interacting Genes database and CytoNCA plugin in Cytoscape were utilized for module analysis. Ingenuity Pathway Analysis (IPA) was used to analyze disease and biological function, Tox function enrichment and upstream regulatory molecules/networks. Fifty-four DEPs were finally confirmed, whose enriched functions and pathways covered cell adhesion, extracellular exosome, complement activation, complement and coagulation cascades, etc. Nine hub genes were identified, including NCAM1, PLG, APOH, C3, PSAP, RBP4, CDH2, NUCB1, and GNS. IPA showed that C3 and PLG are involved in renal and urological system abnormalities. Conclusively, DEPs and hub proteins confirmed in this exploratory AH proteomic analysis may help us gain a deeper understanding of the molecular mechanisms involved in DN progression, providing novel candidate biomarkers for the early detection for diagnosis of DN.
Project description:To investigate the components of the aqueous humor (AH) in patients with retinoblastoma (RB). We collected 0.1 ml AH of 35 children with RB and 20 patients with congenital cataracts as controls. Multiplex enzyme-linked immunosorbent assays (ELISAs) and Luminex xMAP technology were used to assess 45 cytokines/chemokines, matrix metalloproteinases (MMPs), and acute-phase proteins in the identification cohort. The concentrations of IL-6, IL-7, IL-8, IFN-γ, PIGF-1, VEGF-A, β-NGF, HGF, EGF and FGF-2 were significantly higher in the AH of patients with RB than those in the control group (P<0.05). The study showed that the higher levels of IP-10, IL-6, IL-7, IL-8, IFN-γ, PIGF-1, VEGF-A, β-NGF, HGF, EGF and FGF-2 in AH may be associated with RB. Our findings may facilitate a better understanding of the molecular pathways of tumors and solid molecular targets for new strategies for therapy and the earlier diagnosis of RB.
Project description:The purpose of this study is to discover genes that might increase aqueous humor outflow when human ciliary muscle or human trabecular meshwork cells are treated with the prostaglandin analogues latanoprost free acid or prostaglandin F2alpha. Five tissue donors were pooled on each chip. Keywords: other
Project description:PurposeTo compare phospholipid profiles [phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylinositol (PI)] of normotensive and hypertensive aqueous humor (AH) from DBA/2J and compare them with phospholipid profiles of DBA/2J-Gpnmb(+)/SjJ mice.MethodsAH was obtained from young-normotensive DBA/2J, old -hypertensive DBA/2J mice, young and old DBA/2J-Gpnmb(+)/SjJ mice (aging control). Lipids were extracted using modified Bligh and Dyer method and subjected to mass spectrometric identification using appropriate class-specific lipid standards and ratiometric quantification. Corresponding aqueous phase (of extraction) protein concentrations were measured using Bradford method.ResultsThe total amount of phospholipids showed a decrease in the hypertensive state compared to normotensive state. The total PE and total PS contributed over 50% of the total amount. Total PS showed a remarkable decrease in hypertensive compared to normotensive state. In contrast, total PE in the hypertensive stage presented an increase in amount. Unique lipid species were found encompassing all four phospholipid classes in normotensive as well as in the hypertensive state. Several phospholipid species were found common to both states but with remarkable differences in amount in individual states. The ratio of lysophospholipids to total phospholipids is significantly reduced in the hypertensive state. Commensurate with reduced level of lysophospholipids, we found an increased level of lysophospholipase D (Autotaxin) in the hypertensive state. The difference of total phospholipids between young and old was 35.4% in DBA/2J group but 10% in DBA/2J-Gpnmb(+)/SjJ mice.ConclusionThe significant change of phospholipids including lysophospholipids was found commensurate with the elevated intraocular pressure (IOP).
Project description:PurposeTo develop a microvolume analytical method for measurement of the aflibercept concentration in human intraocular fluid and plasma.MethodsWe analyzed trace amounts of aflibercept in human aqueous humor using Fab-selective proteolysis and nano-surface and molecular-orientation limited (nSMOL) proteolysis, coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Patients with age-related macular degeneration or diabetic macular edema were recruited. Just after an injection of 50 µL of aflibercept, regurgitate from needle holes was collected with a micropipette pressed to the side of the injection hole within 10 seconds. The median amount of regurgitate was 4 µL (range, 1-18 µL).ResultsIn human plasma, the aflibercept concentration ranged between 0.195 and 50 µg/mL when using the quantitative signature peptide IIWDSR (aa. 56-61) present on the vascular endothelial growth factor receptor 1 domain of aflibercept. The method was validated by evaluating its linearity, carryover, selectivity, accuracy and precision, dilution effect, and sample/processing stability. As only a minimal amount of regurgitate through needle holes can be sampled, we performed and verified the aflibercept assay using patient samples after 1:10 dilution with control human plasma, a recognized diluent. The median concentration of aflibercept in the regurgitate was 240 µg/mL (range, 13-4300 µg/mL).ConclusionsOur findings indicate that the aflibercept assay using human intraocular fluid can be reliably performed using nSMOL coupled with LC-MS/MS.Translational relevanceThis technique for quantifying aflibercept in the regurgitate suggests that the amount of drug lost post-injection can be ignored, even in patients with a relatively large leak after vitreous injection. This new methodology suggests possible therapeutic responses and may be employed as a general analytical method for trapping many biologics, such as vascular endothelial growth factor, in various types of clinical samples, unaffected by proteinaceous or small organic pharmaceuticals.
Project description:A miRNA PCR array comprising 84 miRNAs was used to analyze the AH (glaucoma, n=3; control, n=3) and LC samples (glaucoma, n=3; control, n=4). Expression levels of 19 and 3 miRNAs were significantly upregulated in the AH and LC samples of the glaucoma group, respectively (p < 0.05).
Project description:Glaucoma is the leading cause of irreversible blindness worldwide. The proteome characterization of glaucoma is not clearly understood. A total of 175 subjects, including 57 primary acute angle-closure glaucoma (PAACG), 50 primary chronic angle-closure glaucoma (PCACG), 35 neovascular glaucoma (NVG), and 33 cataract patients, were enrolled and comparison proteomic analysis was provided. The samples were randomly divided into discovery group or validation group, whose aqueous humor proteome was analyzed by data-independent acquisition or by parallel reaction monitoring. The common proteome features of three types of glaucoma were immune response, lipid metabolism, and cell death. Three proteins, VTN, SERPIND1, and CD14, showed significant upregulation in glaucoma and could discriminate glaucoma from cataract. Mutual differential proteomic analysis of PAACG, PCACG, and NVG showed different proteome characterization of the three types of glaucoma. NVG was characterized with activated angiogenesis. PAACG was characterized with activation of inflammation response. SERPIND1 was discovered to play vital role in glaucoma occurrences, which is associated with eye transparency decrease and glucose metabolism. This study would provide insights in understanding proteome characterization of glaucoma and benefit the clinical application of AH proteome.
Project description:In the past decade, many new pharmacological and surgical treatments have become available to lower intraocular pressure (IOP) for glaucoma. The majority of these options have targeted improving aqueous humor outflow (AHO). At the same time, in addition to new treatments, research advances in AHO assessment have led to the development of new tools to structurally assess AHO pathways and to visualize where aqueous is flowing in the eye. These new imaging modalities have uncovered novel AHO observations that challenge traditional AHO concepts. New behaviors including segmental, pulsatile, and dynamic AHO may have relevance to the disease and the level of therapeutic response for IOP-lowering treatments. By better understanding the regulation of segmental, pulsatile, and dynamic AHO, it may be possible to find new and innovative treatments for glaucoma aiming at these new AHO behaviors.