Omega-6 and omega-3 oxylipins are implicated in soybean oil-induced obesity in mice (part II)
Ontology highlight
ABSTRACT: In this study we have compared the metabolic effects of conventional soybean oil to those of genetically modified Plenish soybean oil, that is low in linoleic acid and high in oleic acid. This work builds on our previous study showing that soybean oil, rich in polyunsaturated fats, is more obesogenic and diabetogenic than coconut oil, rich in saturated fats (PMID: 26200659). Here, in order to elucidate the mechanisms responsible for soybean oil induced obesity, we have performed the first ever metabolomics (in plasma and liver) and proteomics on the livers of mice fed the two soybean oil diets (plus those fed a high coconut oil and Viv chow diet). Our results show that the new high oleic soybean oil induces less obesity and adiposity than conventional soybean oil, but can cause hepatomegaly and liver dysfunction. Metabolomic analysis reveals that the hepatic and plasma metabolic profiles differ considerably between the two soybean oils. Hepatic C18 oxylipin metabolites of omega-6 (ω6) and omega-3 (ω3) fatty acids (linoleic and α-linolenic acid, respectively) in the cytochrome P450/soluble epoxide hydrolase pathway were found to correlate positively with obesity.
ORGANISM(S): Mouse Mus Musculus
TISSUE(S): Blood
DISEASE(S): Obesity
SUBMITTER: Oliver Fiehn
PROVIDER: ST000655 | MetabolomicsWorkbench | Thu Jun 22 00:00:00 BST 2017
REPOSITORIES: MetabolomicsWorkbench
ACCESS DATA