Project description:The optic nerve is part of the mammalian adult central nervous system (CNS) and has limited capability to regenerate after injury. Deletion of phosphatase and tensin homolog (PTEN), a negative regulator of the PI3 kinase/Akt pathway, has been shown to promote regeneration in retinal ganglion cells (RGCs) after optic nerve injury [1]. We present the lipidome of adult PTENloxP/loxP mice subjected to intravitreal injection of adeno-associated viruses expressing Cre (AAV-Cre) as a model of CNS neuroregeneration. At 4 weeks old, PTENloxP/loxP mice were intravitreally-injected with 2-3 μl of either AAV-Cre (KO) or AAV-PLAP (control), and two weeks later optic nerve crush was performed. At indicated time-points after crush (0 days, 7 days, 14 days), mice were euthanized and optic nerves were immediately dissected out, and then flash frozen on dry ice. A modified Bligh and Dyer [2] method was used for lipid extraction from the optic nerves, followed by liquid chromatography-mass spectrometry (LC MS-MS) lipid profiling using a Q-Exactive Orbitrap instrument coupled with Accela 600 HPLC. The raw scans were analysed with LipidSearch 4.2 and the statistical analysis was conducted through Metaboanalyst 4.0. This data is available at Metabolomics Workbench, study ID ST001477.
Project description:In adult mammals, retinal ganglion cells (RGCs) fail to regenerate following damage. As a result, RGCs die after acute injury and in progressive degenerative diseases such as glaucoma; this can lead to permanent vision loss and, eventually, blindness. Lipids are crucial for the development and maintenance of cell membranes, myelin sheaths, and cellular signaling pathways, however, little is known about their role in axon injury and repair. Studies examining changes to the lipidome during optic nerve (ON) regeneration could greatly inform treatment strategies, yet these are largely lacking. Experimental animal models of ON regeneration have facilitated the exploration of the molecular determinants that affect RGC axon regeneration. Here, we analyzed lipid profiles of the ON and retina in an ON crush rat model using liquid chromatography-mass spectrometry. Furthermore, we investigated lipidome changes after ON crush followed by intravitreal treatment with Zymosan, a yeast cell wall derivative known to enhance RGC regeneration. This data is available at the NIH Common Fund's Metabolomics Data Repository and Coordinating Center (supported by NIH grant, U01-DK097430) website, the Metabolomics Workbench, http://www.metabolomicsworkbench.org, where it has been assigned Project ID: PR000661. The data can be accessed directly via it's Project DOI: doi: 10.21,228/M87D53.
Project description:The right optic nerve of adult, 6 month to 1 year old, female and male Danio rerio were crushed and collected three days after. Matching controls of uninjured left optic nerves were also collected. The tissue was dissected from euthanized fish and frozen on dry ice. Samples were pooled for each category (female crush, female control, male crush, male control) n = 24 to obtain sufficient tissue for analysis. The brain from one male fish was also collected for control/calibration. Lipid extraction was done with the Bligh and Dyer [1] method, followed by untargeted liquid chromatography-mass spectrometry (LC MS-MS) lipid profiling using a Q-Exactive Orbitrap instrument coupled with Vanquish Horizon Binary UHPLC LC-MS system. The lipids were identified and quantified with LipidSearch 4.2.21 and the statistical analysis was conducted through Metaboanalyst 5.0. This data is available at Metabolomics Workbench, Study ID ST001725.
Project description:The inflammatory response that accompanies central nervous system (CNS) injury can affect neurological outcome in both positive and negative ways. In the optic nerve, a CNS pathway that normally fails to regenerate when damaged, intraocular inflammation causes retinal ganglion cells (RGCs) to switch into an active growth state and extend lengthy axons down the nerve. The molecular basis of this phenomenon is uncertain. A prior study showed that oncomodulin (Ocm), a Ca(2+)-binding protein secreted by a macrophage cell line, is a potent axon-promoting factor for RGCs. However, it is not known whether Ocm contributes to the physiological effects of intraocular inflammation in vivo, and there are conflicting reports in the literature regarding its expression and significance. We show here that intraocular inflammation causes infiltrative cells of the innate immune system to secrete high levels of Ocm, and that agents that prevent Ocm from binding to its receptor suppress axon regeneration. These results were verified in different strains, species, and experimental models, and establish Ocm as a potent growth-promoting signal between the innate immune system and neurons in vivo.
Project description:The optic nerve transfers visual information from the retina to the brain through the axons of retinal ganglion cells (RGCs). In adult mammals, optic nerve injuries and progressive degenerative diseases lead to the irreversible loss of RGCs, resulting in vision loss and blindness. Optogenetic models have proved useful in manipulating the growth of RGCs through expression and stimulation of channelrhodopsins (Chr2) in RGCs using the RGC-specific thy-1 promoter. Using transgenic Chr2 mouse (Thy1-ChR2-EYFP) as a model of regeneration, we profile the lipid changes which occur after traumatic optic nerve crush, light stimulation and forced RGC axonal growth. Thy1-ChR2-EYFP and control (C57BL/6) mice were divided in four groups each - 1) no crush and no stimulation, 2) no crush with stimulation, 3) crush and without stimulation, and 4) crush with stimulation. After euthanasia, the optic nerves were collected for lipidomic analysis. The Bligh and Dyer method was used for lipid extraction, followed by mass spectrometry lipid profiling with a Q-Exactive Orbitrap Liquid Chromatography-Mass Spectrometer (LC MS-MS). The raw scans were analysed with LipidSearch 4.1.3 and the statistical analysis was conducted through Metaboanalyst 4.0. This data is available at Metabolomics Workbench, study ID ST001381: [https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&StudyID=ST001381&StudyType=MS&ResultType=5].
Project description:We present lipid profiling data from mouse retina and optic nerve after optic nerve crush and during Wnt3a-induced axonal regeneration at 7 and 15 days post-crush. This data is available at the Metabolomics Workbench, http://www.metabolomicsworkbench.org (Project ID: PR000718).
Project description:Optic nerve (ON) regeneration in mammalian systems is limited by an overshadowing dominance of inhibitory factors. This has severely hampered the identification of pro-regenerative pathways. Here, we take advantage of the regenerative capacity of larval zebrafish to identify pathways that promote ON regeneration. From a small molecule screen, we identified modulators of serotonin (5-HT) signaling that inhibit ON regeneration. We find several serotonin type-1 receptor genes are expressed in RGC neurons during regeneration and that inhibiting 5-HT1 receptors or components of the 5-HT pathway selectively impedes ON regeneration. We show that 5-HT1 receptor signaling is dispensable during ON development yet is critical for regenerating axons to emerge from the injury site. Blocking 5-HT receptors once ON axons have crossed the chiasm does not inhibit regeneration, suggesting a selective role for 5-HT receptor signaling early during ON regeneration. Finally, we show that agonist-mediated activation of 5-HT1 receptors leads to enhanced and ectopic axonal regrowth. Combined, our results provide evidence for mechanisms through which serotonin-dependent neuromodulation directs ON regeneration in vivo.
Project description:PurposeTo determine major differences in lipid profile between human control and glaucomatous optic nerve. To assess major enzymes in lipid pathway if aberration is revealed for a lipid class by profiling.MethodsOptic nerve (ON) samples were obtained from human cadaveric donors [control (n = 11) and primary open-angle glaucoma (POAG; n = 12)]; the lipids were extracted using Bligh and Dyer methods. Control and glaucoma donors were all Caucasians age 72.3 ± 5.9 and 70.3 ± 10.5 (inclusive of both sexes), respectively. Lipids were extracted after weighing the tissue; the protein amounts in the corresponding aqueous phase of organic solvent extraction were recorded. High-resolution mass spectrometry was performed using a Q-exactive mass spectrometer coupled with an EASY-nLC 1000 liquid chromatograph instrument. Bioinformatics and statistical analysis were performed using LipidSearch v.4.1 and MetaboAnalyst 4.0/STATA 14.2. Protein amounts were determined using Bradford's method. Western blot, ELISA, and immunohistochemistry utilized established protocols and were performed for protein quantification and localization, respectively. Additional donor tissues were utilized for Western blot, ELISA, and immunohistochemistry.ResultsPrincipal component analysis (PCA) placed control and glaucomatous ONs in two distinct groups based on analysis of lipid profiles. Total lipid, total phospholipids, total ceramide, and total sphingolipids were similar (without significant difference) between control and glaucoma. However, we found a significant increase in glucosylsphingosine in glaucoma compared to control samples. We found similar levels of glucocerebrosidase (GBA), ceramide glucosyltransferase (UGCG), decreased nonlysosomal glucocerebrosidase (GBA2), and increased lysosomal and nonlysosomal acylsphingosine amidohydrolase (ASAH1 and ASAH2) levels in glaucomatous ON compared to control.ConclusionsWe found significant differences in glucosylsphingosine lipids, consistent with decreased GBA and GBA2 and increased ASAH1 and ASAH2 immunoreactivity in glaucoma, suggesting the potential impairment of sphingolipid enzymatic pathways in lysosomal and nonlysosomal cellular compartments.
Project description:Reactive gliosis is a complex process that involves profound changes in gene expression. We used microarray to indentify differentially expressed genes and to investigate the molecular mechanisms of reactive gliosis in optic nerve head in response to optic nerve crush injury. C57Bl/6 female mice were 6-8 weeks old at the time of optic nerve crush surgery. The optic nerve in the left eye was crush 1 mm behind the globe for 10 seconds and the right eye served as contralateral control. The animals were allowed to recover for 1 day, 3 day, 1 week, 3 weeks and 3 months before the optic nerve heads were collected. The naive control mice did not receive any surgery in either eye. Due to the small tissue size of the mouse optic nerve head, two optic nerve heads were pooled together for each microarray chip. The left eyes and the right eyes of two mice were combined respectively to form one pair of experiment and control samples. There were five biological replicates (10 mice) for each condition.
Project description:Diverse insults to the optic nerve result in partial to total vision loss as the axons of retinal ganglion cells are destroyed. In glaucoma, axons are injured at the optic nerve head; in other optic neuropathies, axons can be damaged along the entire visual pathway. In all cases, as mammals cannot regenerate injured central nervous system cells, once the axons are lost, vision loss is irreversible. However, much has been learned about how retinal ganglion cells respond to axon injuries, and many of these crucial discoveries offer hope for future regenerative therapies. Here we review the current understanding regarding the temporal progression of axonal degeneration. We summarize known survival and regenerative mechanisms in mammals, including specific signaling pathways, key transcription factors, and reprogramming genes. We cover mechanisms intrinsic to retinal ganglion cells as well as their interactions with myeloid and glial cell populations in the retina and optic nerve that affect survival and regeneration. Finally, we highlight some non-mammalian species that are able to regenerate their retinal ganglion cell axons after injury, as understanding these successful regenerative responses may be essential to the rational design of future clinical interventions to regrow the optic nerve. In the end, a combination of many different molecular and cellular interventions will likely be the only way to achieve functional recovery of vision and restore quality of life to millions of patients around the world.