Project description:The reactive intermediate deaminase RidA (EC 3.5.99.10) is conserved across all domains of life and deaminates reactive enamine species. When Salmonella enterica ridA mutants are grown in minimal medium, 2-aminoacrylate (2AA) accumulates, damages several pyridoxal 5'-phosphate (PLP)-dependent enzymes, and elicits an observable growth defect. Genetic studies suggested that damage to serine hydroxymethyltransferase (GlyA), and the resultant depletion of 5,10-methelenetetrahydrofolate (5,10-mTHF), was responsible for the observed growth defect. However, the downstream metabolic consequence from GlyA damage by 2AA remains relatively unexplored. This study sought to use untargeted proton nuclear magnetic resonance (1H NMR) metabolomics to determine whether the metabolic state of an S. enterica ridA mutant was accurately reflected by characterizing growth phenotypes. The data supported the conclusion that metabolic changes in a ridA mutant were due to the IlvA-dependent generation of 2AA, and that the majority of these changes were a consequence of damage to GlyA. While many of the metabolic differences for a ridA mutant could be explained, changes in some metabolites were not easily modeled, suggesting that additional levels of metabolic complexity remain to be unraveled.IMPORTANCE The accumulation of the reactive enamine intermediate 2-aminoacrylate (2AA) elicits global metabolic stress in many prokaryotes and eukaryotes by simultaneously damaging multiple pyridoxal 5'-phosphate (PLP)-dependent enzymes. This work employed 1H NMR to expand our understanding of the consequence(s) of 2AA stress on metabolite pools and effectively identify the metabolic changes stemming from one damaged target: GlyA. This study shows that nutrient supplementation during 1H NMR metabolomics experiments can disentangle complex metabolic outcomes stemming from a general metabolic stress. Metabolomics shows great potential to complement classical reductionist approaches to cost-effectively accelerate the rate of progress in expanding our global understanding of metabolic network structure and physiology. To that end, this work demonstrates the utility in implementing nutrient supplementation and genetic perturbation into metabolomics workflows as a means to connect metabolic outputs to physiological phenomena and establish causal relationships.
Project description:The RidA/Yer057/UK114 family of proteins is well represented across the domains of life and recent work has defined both an in vitro activity and an in vivo role for RidA. RidA proteins have enamine deaminase activity, and in their absence the reactive 2-aminoacrylate (2-AA) accumulates and inactivates at least some pyridoxal 5'-phosphate (PLP)-containing enzymes in Salmonella enterica. The conservation of RidA suggested that 2-AA was a ubiquitous cellular stressor that was generated in central metabolism. Phenotypically, strains of S. enterica that lack RidA accumulated significantly more pyruvate in the growth medium than wild-type strains. Here we dissected this ridA mutant phenotype and showed it was an indirect consequence of damage to serine hydroxymethyltransferase (GlyA; E.C. 2.1.2.1). The results here identified a fourth PLP enzyme as a target of enamine stress in Salmonella.
Project description:The interplay between pathogens and hosts has been studied for decades using targeted approaches such as the analysis of mutants and host immunological responses. Although much has been learned from such studies, they focus on individual pathways and fail to reveal the global effects of infection on the host. To alleviate this issue, high-throughput methods such as transcriptomics and proteomics have been used to study host-pathogen interactions. Recently, metabolomics was established as a new method to study changes in the biochemical composition of host tissues. We report a metabolomics study of Salmonella enterica serovar Typhimurium infection. We used Fourier Transform Ion Cyclotron Resonance Mass Spectrometry with Direct Infusion to reveal that dozens of host metabolic pathways are affected by Salmonella in a murine infection model. In particular, multiple host hormone pathways are disrupted. Our results identify unappreciated effects of infection on host metabolism and shed light on mechanisms used by Salmonella to cause disease, and by the host to counter infection.
Project description:BackgroundPrimary focal segmental glomerulosclerosis (FSGS) is pathological entity which is characterized by idiopathic steroid-resistant nephrotic syndrome (SRNS) and progression to end-stage renal disease (ESRD) in the majority of affected individuals. Currently, there is no practical noninvasive technique to predict different pathological types of glomerulopathies. In this study, the role of urinary metabolomics in the diagnosis and pathogenesis of FSGS was investigated.MethodsNMR-based metabolomics was applied for the urinary metabolic profile in the patients with FSGS (n?=?25), membranous nephropathy (MN, n?=?24), minimal change disease (MCD, n?=?14) and IgA nephropathy (IgAN, n?=?26), and healthy controls (CON, n?=?35). The acquired data were analyzed using principal component analysis (PCA) followed by orthogonal projections to latent structure discriminant analysis (OPLS-DA). Model validity was verified using permutation tests.ResultsFSGS patients were clearly distinguished from healthy controls and other three types of glomerulopathies with good sensitivity and specificity based on their global urinary metabolic profiles. In FSGS patients, urinary levels of glucose, dimethylamine and trimethylamine increased compared with healthy controls, while pyruvate, valine, hippurate, isoleucine, phenylacetylglycine, citrate, tyrosine, 3-methylhistidine and ?-hydroxyisovalerate decreased. Additionally, FSGS patients had lower urine N-methylnicotinamide levels compared with other glomerulopathies.ConclusionsNMR-based metabonomic approach is amenable for the noninvasive diagnosis and differential diagnosis of FSGS as well as other glomerulopathies, and it could indicate the possible mechanisms of primary FSGS.
Project description:The interplay between pathogens and hosts has been studied for decades using targeted approaches such as the analysis of mutants and host immunological responses. Although much has been learned from such studies, they focus on individual pathways and fail to reveal the global effects of infection on the host. To alleviate this issue, high-throughput methods such as transcriptomics and proteomics have been used to study host-pathogen interactions. Recently, metabolomics was established as a new method to study changes in the biochemical composition of host tissues. We report a metabolomics study of Salmonella enterica serovar Typhimurium infection. We used Fourier Transform Ion Cyclotron Resonance Mass Spectrometry with Direct Infusion to reveal that dozens of host metabolic pathways are affected by Salmonella in a murine infection model. In particular, multiple host hormone pathways are disrupted. Our results identify unappreciated effects of infection on host metabolism and shed light on mechanisms used by Salmonella to cause disease, and by the host to counter infection. Female C57BL/6 mice were infected with Salmonella enterica serovar Typhimurium SL1344 cells by oral gavage. Feces and livers were collected and metabolites extracted using acetonitrile. For experiments with feces, samples were collected from 4 mice before and after infection. For liver experiments, 11 uninfected and 11 infected mice were used. Samples were combined into 3 groups of 3-4 mice each, resulting in the analysis of 3 group samples of uninfected and 3 of infected mice. Extracts were infused into a 12-T Apex-Qe hybrid quadrupole-FT-ICR mass spectrometer equipped with an Apollo II electrospray ionization source, a quadrupole mass filter and a hexapole collision cell. Raw mass spectrometry data were processed as described elsewhere (Han et al. 2008. Metabolomics. 4:128-140 [PMID 19081807]). To identify differences in metabolite composition between uninfected and infected samples, we filtered the list of masses for metabolites which were present on one set of samples but not the other. Additionally, we calculated the ratios between averaged intensities of metabolites from uninfected and infected mice. To assign possible metabolite identities, monoisotopic neutral masses of interest were queried against MassTrix (http://masstrix.org). Masses were searched against the Mus musculus database within a mass error of 3 ppm. Data were analyzed by unpaired t tests with 95% confidence intervals.
Project description:BackgroundIdentification of target antigens PLA2R, THSD7A, NELL1, or Semaphorin-3B can explain the majority of cases of primary membranous nephropathy (MN). However, target antigens remain unidentified in 15%-20% of patients.MethodsA multipronged approach, using traditional and modern technologies, converged on a novel target antigen, and capitalized on the temporal variation in autoantibody titer for biomarker discovery. Immunoblotting of human glomerular proteins followed by differential immunoprecipitation and mass spectrometric analysis was complemented by laser-capture microdissection followed by mass spectrometry, elution of immune complexes from renal biopsy specimen tissue, and autoimmune profiling on a protein fragment microarray.ResultsThese approaches identified serine protease HTRA1 as a novel podocyte antigen in a subset of patients with primary MN. Sera from two patients reacted by immunoblotting with a 51-kD protein within glomerular extract and with recombinant human HTRA1, under reducing and nonreducing conditions. Longitudinal serum samples from these patients seemed to correlate with clinical disease activity. As in PLA2R- and THSD7A- associated MN, anti-HTRA1 antibodies were predominantly IgG4, suggesting a primary etiology. Analysis of sera collected during active disease versus remission on protein fragment microarrays detected significantly higher titers of anti-HTRA1 antibody in active disease. HTRA1 was specifically detected within immune deposits of HTRA1-associated MN in 14 patients identified among three cohorts. Screening of 118 "quadruple-negative" (PLA2R-, THSD7A-, NELL1-, EXT2-negative) patients in a large repository of MN biopsy specimens revealed a prevalence of 4.2%.ConclusionsConventional and more modern techniques converged to identify serine protease HTRA1 as a target antigen in MN.
Project description:BolA is a ubiquitous global transcription factor. Despite its clear role in the induction of important stress-resistant physiological changes and its recent implication in the virulence of Salmonella, further research is required to shed light on the pathways modulated by BolA. In this study, we resorted to untargeted 1H-NMR metabolomics to understand the impact of BolA on the metabolic profile of Salmonella Typhimurium, under virulence conditions. Three strains of S. Typhimurium SL1344 were studied: An SL1344 strain transformed with an empty plasmid (control), a bolA knockout mutant (ΔbolA), and a strain overexpressing bolA (bolA+). These strains were grown in a minimal virulence-inducing medium and cells were collected at the end of the exponential and stationary phases. The extracts were analyzed by NMR, and multivariate and univariate statistical analysis were performed to identify significant alterations. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of 1H-NMR data allowed the discrimination between the metabolic profiles of these strains, revealing increased levels of acetate, valine, alanine, NAD+, succinate, coenzyme A, glutathione, and putrescine in bolA+. These results indicate that BolA regulates pathways related to stress resistance and virulence, being an important modulator of the metabolic processes needed for S. Typhimurium infection.
Project description:Analytical methodologies to comprehensively evaluate beef quality are increasingly needed to accelerate improvement in both breeding and post-mortem processing. Consumer palatability towards beef is generally attributed to tenderness, flavor, and/or juiciness. These primary qualities are modified by post-mortem aging and the crude content and fatty acid composition of intramuscular fat. In this study, we report a nuclear magnetic resonance (NMR)-based metabolic profiles of Japanese Black cattle to evaluate the compositional attributes of intramuscular fat and the long-term post-mortem aging. The unsaturation degree of triacylglycerol was estimated by the 1H NMR spectra and was correlated with the content ratio of unsaturated fatty acids (R 2 = 0.944) and the melting point of intramuscular fat (R 2 = 0.871). NMR-detected profiles of water-soluble metabolites revealed overall metabolic change (R 2 = 0.951) and several metabolites (R 2 > 0.818) linearly correlated with long-term aging duration, which can be used to evaluate the aging rate and aging duration of beef. This approach also provided the pH profile during aging, which is related to the water-holding capacity of beef. Thus, NMR-based metabolomics has the potential to evaluate multiple parameters related to the beef qualities of Japanese Black cattle.