Project description:The adaptor protein Lnk is an important negative regulator of HSC homeostasis and self-renewal. This study aims to investigate the role of Lnk in HSC aging. Here we performed expression profiling of bone marrow CD150+CD48-LSK LT-HSCs from young and old WT and Lnk-/- mice. Results identify select Lnk-mediated pathways with potential involvement in HSC self-renewal and aging.
Project description:Brain-specific SIRT6-KO mice present increased DNA damage, learning impairments, and neurodegenerative phenotypes, placing SIRT6 as a key protein in preventing neurodegeneration. In the aging brain, SIRT6 levels/activity decline, which is accentuated in Alzheimer's patients. To understand SIRT6 roles in transcript pattern changes, we analyzed transcriptomes of young WT, old WT and young SIRT6-KO mice brains, and found changes in gene expression related to healthy and pathological aging. In addition, we traced these differences in human and mouse samples of Alzheimer's and Parkinson's diseases, healthy aging and calorie restriction (CR). Our results define four gene expression categories that change with age in a pathological or non-pathological manner, which are either reversed or not by CR. We found that each of these gene expression categories is associated with specific transcription factors, thus serving as potential candidates for their category-specific regulation. One of these candidates is YY1, which we found to act together with SIRT6 regulating specific processes. We thus argue that SIRT6 has a pivotal role in preventing age-related transcriptional changes in brains. Therefore, reduced SIRT6 activity may drive pathological age-related gene expression signatures in the brain.
Project description:The adaptor protein Lnk is an important negative regulator of HSC homeostasis and self-renewal. This study aims to investigate the role of Lnk in HSC aging. Here we performed expression profiling of bone marrow CD150+CD48-LSK LT-HSCs from young and old WT and Lnk-/- mice. Results identify select Lnk-mediated pathways with potential involvement in HSC self-renewal and aging. CD150+CD48-LSK HSCs were double sorted from WT and Lnk-/- mice at both young and old ages (2 months and 20 months, respectively). RNA was isolated using miRNeasy kit from QIAGEN and processed using the NuGEN Pico kit. The microarray analysis was performed at the Penn Molecular Profiling/Genomics Facility using GeneChip Mouse Gene 1.0ST array (Affymetrix).
Project description:UnlabelledNonalcoholic fatty liver disease (NAFLD) and insulin resistance have recently been found to be associated with increased plasma concentrations of apolipoprotein CIII (APOC3) in humans carrying single nucleotide polymorphisms within the insulin response element of the APOC3 gene. To examine whether increased expression of APOC3 would predispose mice to NAFLD and hepatic insulin resistance, human APOC3 overexpressing (ApoC3Tg) mice were metabolically phenotyped following either a regular chow or high-fat diet (HFD). After HFD feeding, ApoC3Tg mice had increased hepatic triglyceride accumulation, which was associated with cellular ballooning and inflammatory changes. ApoC3Tg mice also manifested severe hepatic insulin resistance assessed by a hyperinsulinemic-euglycemic clamp, which could mostly be attributed to increased hepatic diacylglycerol content, protein kinase C-ϵ activation, and decreased insulin-stimulated Akt2 activity. Increased hepatic triglyceride content in the HFD-fed ApoC3Tg mice could be attributed to a ≈ 70% increase in hepatic triglyceride uptake and ≈ 50% reduction hepatic triglyceride secretion.ConclusionThese data demonstrate that increase plasma APOC3 concentrations predispose mice to diet-induced NAFLD and hepatic insulin resistance.
Project description:Aging of the peripheral nervous system (PNS) is associated with structural and functional changes that lead to a reduction in regenerative capacity and the development of age-related peripheral neuropathy. Myelin is a central component in maintaining physiological peripheral nerve function, and differences in myelin maintenance, degradation, formation and clearance have been suggested to contribute to age-related PNS changes. In addition, recent proteomic studies have elucidated the complex composition of the total myelin proteome in health and its changes in neuropathy models. However, changes in the myelin proteome of peripheral nerves during ageing have not been investigated. Hence, the aim of this proteomics experiment was to define proteome changes in isolated myelin fractions during ageing, by investigating myelin proteome profiles from young (nerves from 2-3 month old mice) and old (nerves from 18 months old mice) nerves.
Project description:When fed with a high-fat safflower oil diet for 3 wk, wild-type mice develop hepatic insulin resistance, whereas mice lacking glycerol-3-phosphate acyltransferase-1 retain insulin sensitivity. We examined early changes in the development of insulin resistance via liver and plasma metabolome analyses that compared wild-type and glycerol-3-phosphate acyltransferase-deficient mice fed with either a low-fat or the safflower oil diet for 3 wk. We reasoned that diet-induced changes in metabolites that occurred only in the wild-type mice would reflect those metabolites that were specifically related to hepatic insulin resistance. Of the identifiable metabolites (from 322 metabolites) in liver, wild-type mice fed with the high-fat diet had increases in urea cycle intermediates, consistent with increased deamination of amino acids used for gluconeogenesis. Also increased were stearoylglycerol, gluconate, glucarate, 2-deoxyuridine, and pantothenate. Decreases were observed in S-adenosylhomocysteine, lactate, the bile acid taurocholate, and 1,5-anhydroglucitol, a previously identified marker of short-term glycemic control. Of the identifiable metabolites (from 258 metabolites) in plasma, wild-type mice fed with the high-fat diet had increases in plasma stearate and two pyrimidine-related metabolites, whereas decreases were found in plasma bradykinin, alpha-ketoglutarate, taurocholate, and the tryptophan metabolite, kynurenine. This study identified metabolites previously not known to be associated with insulin resistance and points to the utility of metabolomics analysis in identifying unrecognized biochemical pathways that may be important in understanding the pathophysiology of diabetes.
Project description:Uncoupling protein 3 (UCP3) is highly selectively expressed in skeletal muscle and is known to lower mitochondrial reactive oxygen species and promote fatty acid oxidation; however, the global impact of UCP3 activity on skeletal muscle and whole-body metabolism have not been extensively studied. We utilized untargeted metabolomics to identify novel metabolites that distinguish mice overexpressing UCP3 in muscle, both at rest and after exercise regimens that challenged muscle metabolism, to potentially unmask subtle phenotypes. Male wild-type (WT) and muscle-specific UCP3-overexpressing transgenic (UCP3 Tg) C57BL/6J mice were compared with or without a 5 wk endurance training protocol at rest or after an acute exercise bout (EB). Skeletal muscle, liver, and plasma samples were analyzed by gas chromatography time-of-flight mass spectrometry. Discriminant metabolites were considered if within the top 99th percentile of variable importance measurements obtained from partial least-squares discriminant analysis models. A total of 80 metabolites accurately discriminated UCP3 Tg mice from WT when modeled within a specific exercise condition (i.e., untrained/rested, endurance trained/rested, untrained/EB, and endurance trained/EB). Results revealed that several amino acids and amino acid derivatives in skeletal muscle and plasma of UCP3 Tg mice (e.g., Asp, Glu, Lys, Tyr, Ser, Met) were significantly reduced after an EB; that metabolites associated with skeletal muscle glutathione/Met/Cys metabolism (2-hydroxybutanoic acid, oxoproline, Gly, and Glu) were altered in UCP3 Tg mice across all training and exercise conditions; and that muscle metabolite indices of dehydrogenase activity were increased in UCP3 Tg mice, suggestive of a shift in tissue NADH/NAD+ ratio. The results indicate that mitochondrial UCP3 activity affects metabolism well beyond fatty acid oxidation, regulating biochemical pathways associated with amino acid metabolism and redox status. That select metabolites were altered in liver of UCP3 Tg mice highlights that changes in muscle UCP3 activity can also affect other organ systems, presumably through changes in systemic metabolite trafficking.-Aguer, C., Piccolo, B. D., Fiehn, O., Adams, S. H., Harper, M.-E. A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3.
Project description:DNA methylation occurs as 5-methylcytosines mainly at cytosine-guanine dinucleotides, so-called CpG sites, and such methylation is a well-studied epigenetic mechanism for transcriptional regulation. Genomic DNA methylation patterns are established by the actions of the de novo methyltransferases Dnmt3a and Dnmt3b, and are maintained by the methyltransferase Dnmt1. Expression of Dnmt3a mRNA is relatively high in skeletal muscle, suggesting a major role in transcriptional regulation. Thus, we created transgenic mice specifically overexpressing Dnmt3a in skeletal muscle (Dnmt3a Tg mice). In this study, we performed a microarray analysis of skeletal muscle in wild-type control and Dnmt3a Tg mice (young: 3 months of age, female, and old: 26 months of age, female). The microarray data shows upregulation of a set of slow-twitch myofiber-specific genes and downregulation of fast-twitch myofiber-specific genes in Dnmt3a-Tg muscle compared with WT muscle.