Metabolomics

Dataset Information

0

Lung cancer metabolomics analysis


ABSTRACT: This study explored models predictive of staging and chemotherapy response based on metabolomic analysis of fresh, patient-derived non-small cell lung cancer (NSCLC) core biopsies. Prospectively collected tissue samples before initial treatment were evaluated with high-resolution 2DLC-MS/MS and 13C-glucose enrichment, and the data were comprehensively analyzed with machine learning techniques. Patients were categorized as Disease-Control (DC) [encompassing complete-response (CR), partial-response (PR), and stable-disease (SD)] and Progressive-Disease (PD). Four major types of learning methods (partial least squares discriminant analysis (PLS-DA), support vector machines (SVM), artificial neural networks, and random forests) were applied to differentiate between positive (DC and CR/PR) and poor (PD and SD/PD) responses, and between stage I/II/III and stage IV disease. Models were trained with forward feature selection based on variable importance and tested on validation subsets.

ORGANISM(S): Human Homo Sapiens

TISSUE(S): Tumor Cells

DISEASE(S): Cancer

SUBMITTER: Hermann Frieboes  

PROVIDER: ST001527 | MetabolomicsWorkbench | Wed Sep 16 00:00:00 BST 2020

REPOSITORIES: MetabolomicsWorkbench

Dataset's files

Source:
Action DRS
mwtab Other
Items per page:
1 - 1 of 1

Similar Datasets

2010-03-09 | E-GEOD-19293 | biostudies-arrayexpress
2011-12-22 | E-GEOD-34599 | biostudies-arrayexpress
| 37438 | ecrin-mdr-crc
2011-01-01 | E-GEOD-22968 | biostudies-arrayexpress
2014-08-12 | E-GEOD-48664 | biostudies-arrayexpress
| 89141 | ecrin-mdr-crc
2015-12-31 | E-GEOD-68871 | biostudies-arrayexpress
| 2689133 | ecrin-mdr-crc
| 2191128 | ecrin-mdr-crc
2022-12-22 | PXD039045 |