Alterations in the fecal microbiome and metabolome of horses with antimicrobial-associated diarrhea compared to antibiotic-treated and non-treated healthy case controls
Project description:Diarrhea is an adverse effect of antimicrobial therapy in horses. This matched, case-controlled study compared the fecal microbiome and metabolome of horses on antibiotics that developed diarrhea (AAD, n = 17) to those that did not develop diarrhea (ABX, n = 15) and to a control population not exposed to antibiotics (CON, n = 31). Fecal samples were collected from horses that were matched for diet and antimicrobial agent (including dose, route, and duration of therapy). Illumina sequencing of 16S rRNA genes was performed, and QIIME 2.0 was used to generate alpha and beta diversity metrics. Untargeted metabolomics using GC-MS platforms was performed and analyzed using Metaboanalyst 5.0. Microbiome composition was significantly different in AAD compared to CON (ANOSIM, R = 0.568, p = 0.001) but not to ABX (ANOSIM, R = 0.121, p = 0.0012). AAD and ABX horses had significantly decreased richness and evenness compared to CON horses (p < 0.05). Horses on antimicrobials (AAD and ABX) had significant changes in 14 phyla compared to CON horses. Only Verrucomicrobia distinguished AAD from ABX and CON horses (q = 0.0005). Metabolite profiles of horses with AAD clustered separately from ABX and CON horses. Seven metabolites were found to be significantly different between groups (p < 0.05): L-tyrosine, kynurenic acid, xanthurenic acid, 5-hydroxyindole-3-acetic acid, docosahexaenoic acid ethyl ester, daidzein, and N-acetyltyramine. Metabolite profiles of horses on antimicrobials, especially those with AAD, are altered compared to CON horses.
Project description:Antibiotics can drive the rapid loss of non-target, phylogenetically diverse microorganisms that inhabit the human gut. This so-called "collateral damage" has myriad consequences for host health and antibiotic mediated changes to the gut microbiota have been implicated in the aetiology of many chronic diseases. To date, studies have largely focused on how antibiotics affect the bacterial fraction of the gut microbiome and their impact on non-bacterial members, including prevalent eukaryal species, such as Blastocystis, remains largely unknown. Here we assessed the prevalence and diversity of Blastocystis in an elderly adult group that were in receipt of antibiotics (n = 86) and an equivalent non-antibiotic treated group (n = 88) using a PCR-based approach. This analysis revealed that although similar subtypes were present in both groups, Blastocystis was significantly less prevalent in the antibiotic-treated group (16%) compared to non-antibiotic treated controls (55%); Fisher's Exact test, p < 0.0001). Given that antibiotics target structures and molecules of prokaryotic cells to kill or inhibit bacterial populations, the most likely explanation for differences in prevalence between both groups is due to secondary extinctions owing to the potential dependence of Blastocystis on bacteria present in the gut microbiome that were negatively affected by antibiotic treatment. Although further work is required to explore this hypothesis in greater detail, these data clearly show that Blastocystis prevalence in human populations is negatively associated with antibiotic treatment. This finding may be relevant to explaining patterns of variation for this microorganism in different human populations and cohorts of interest.
Project description:Background and aimsColorectal cancer (CRC) incidence is increasing in young patients without a clear etiology. Emerging data have implicated the fecal microbiome in CRC carcinogenesis. However, its impact on young onset CRC is poorly defined.MethodsWe performed a meta-analysis of fecal metagenomics sequencing data from n = 692 patients with CRC and n = 602 healthy controls from eleven studies to evaluate features of the fecal metagenome associated with CRC. We hypothesized that known carcinogenic virulence factors (colibactin, fadA) and species abundance may be differentially enriched in young CRC patients relative to older CRC patients and controls.ResultsSummary odds ratios (OR) for CRC were increased with the presence of colibactin (OR 1.92 95% CI 1.08-3.38), fadA (OR 4.57 95% CI 1.63-12.85), and F. nucleatum (OR 6.93 95% CI 3.01-15.96) in meta-analysis models adjusted for age, gender, and body mass index. The OR for CRC for the presence of E.coli was 2.02 (0.92-4.45). An increase in the prevalence of Fusobacterium nucleatum (OR = 1.40 [1.18; 1.65]) and Escherichia coli (OR = 1.14 [1.02; 1.28]) per 10-year increase in age was observed in models including samples from both CRC and healthy controls. Species relative abundance was differentially enriched in young CRC patients for five species-Intestinimonas butyriciproducens, Holdemania filiformis, Firimicutues bacterium CAG 83, Bilophilia wadsworthia, and Alistipes putredinis.ConclusionIn this study, we observed strong associations with CRC status for colibactin, fadA, and Fusobacterium nucleatum with CRC relative to controls. In addition, we identified several microbial species differentially enriched in young colorectal cancer patients. Studies targeting the young CRC patients are warranted to elucidate underlying preclinical mechanisms.
Project description:Emerging evidence suggests that altered intestinal microbiota plays an important role in the pathogenesis of many liver diseases, mainly by promoting inflammation via the "intestinal microbiota-immunity-liver" axis. We aimed to investigate the fecal microbiome of liver recipients with abnormal/normal liver function using 16S rRNA gene sequencing. Fecal samples were collected from 90 liver recipients [42 with abnormal liver function (Group LT_A) and 48 with normal liver function (Group LT_N)] and 61 age- and gender-matched healthy controls (HCs). Fecal microbiomes were analyzed for comparative composition, diversity, and richness of microbial communities. Principal coordinates analysis successfully distinguished the fecal microbiomes of recipients in Group LT_A from healthy subjects, with the significant decrease of fecal microbiome diversity in recipients in Group LT_A. Other than a higher relative abundance of opportunistic pathogens such as Klebsiella and Escherichia/Shigella in all liver recipients, the main difference in gut microbiome composition between liver recipients and HC was the lower relative abundance of beneficial butyrate-producing bacteria in the recipients. Importantly, we established a fecal microbiome index (specific alterations in Staphylococcus and Prevotella) that could be used to distinguish Group LT_A from Group LT_N, with an area under the receiver operating characteristic curve value of 0.801 and sensitivity and specificity values of 0.771 and 0.786, respectively. These findings revealed unique gut microbial characteristics of liver recipients with abnormal and normal liver functions, and identified fecal microbial risk indicators of abnormal liver function in liver recipients.
Project description:Microstructural asymmetry of the brain can provide more direct causal explanations of functional lateralization than can macrostructural asymmetry. We performed a cross-sectional diffusion imaging study of 314 patients treated for childhood acute lymphoblastic leukemia (ALL) at a single institution and 92 healthy controls. An asymmetry index based on diffusion metrics was computed to quantify brain microstructural asymmetry. The effects of age and the asymmetry metrics of the two cohorts were examined with t-tests and linear models. We discovered two new types of microstructural asymmetry. Myelin-related asymmetry in controls was prominent in the back brain (89% right), whereas axon-related asymmetry occurred in the front brain (67% left) and back brain (88% right). These asymmetries indicate that white matter is more mature and more myelinated in the left back brain, potentially explaining the leftward lateralization of language and visual functions. The asymmetries increase throughout childhood and adolescence (P = 0.04) but were significantly less in patients treated for ALL (P<0.01), especially in younger patients. Our results indicate that atypical brain development may appear long before patients treated with chemotherapy become symptomatic.
Project description:Antibiotic usage is the most commonly cited risk factor for hospital-acquired Clostridium difficile infections (CDI). The increased risk is due to disruption of the indigenous microbiome and a subsequent decrease in colonization resistance by the perturbed bacterial community; however, the specific changes in the microbiome that lead to increased risk are poorly understood. We developed statistical models that incorporated microbiome data with clinical and demographic data to better understand why individuals develop CDI. The 16S rRNA genes were sequenced from the feces of 338 individuals, including cases, diarrheal controls, and nondiarrheal controls. We modeled CDI and diarrheal status using multiple clinical variables, including age, antibiotic use, antacid use, and other known risk factors using logit regression. This base model was compared to models that incorporated microbiome data, using diversity metrics, community types, or specific bacterial populations, to identify characteristics of the microbiome associated with CDI susceptibility or resistance. The addition of microbiome data significantly improved our ability to distinguish CDI status when comparing cases or diarrheal controls to nondiarrheal controls. However, only when we assigned samples to community types was it possible to differentiate cases from diarrheal controls. Several bacterial species within the Ruminococcaceae, Lachnospiraceae, Bacteroides, and Porphyromonadaceae were largely absent in cases and highly associated with nondiarrheal controls. The improved discriminatory ability of our microbiome-based models confirms the theory that factors affecting the microbiome influence CDI. IMPORTANCE The gut microbiome, composed of the trillions of bacteria residing in the gastrointestinal tract, is responsible for a number of critical functions within the host. These include digestion, immune system stimulation, and colonization resistance. The microbiome's role in colonization resistance, which is the ability to prevent and limit pathogen colonization and growth, is key for protection against Clostridium difficile infections. However, the bacteria that are important for colonization resistance have not yet been elucidated. Using statistical modeling techniques and different representations of the microbiome, we demonstrated that several community types and the loss of several bacterial populations, including Bacteroides, Lachnospiraceae, and Ruminococcaceae, are associated with CDI. Our results emphasize the importance of considering the microbiome in mediating colonization resistance and may also direct the design of future multispecies probiotic therapies.
Project description:As the COVID-19 pandemic spread globally, the consumption of antibiotics increased. However, no studies exist evaluating the effect of antibiotics use on the antibiotic resistance of intestinal flora in COVID-19 patients during the pandemic. To explore this issue, we collected 15 metagenomic data of fecal samples from healthy controls (HCs) with no use history of antibiotics, 23 metagenomic data of fecal samples from COVID-19 patients who received empirical antibiotics [COVID-19 (abx+)], 18 metagenomic data of fecal samples from antibiotics-naïve COVID-19 patients [COVID-19 (abx-)], and six metagenomic data of fecal samples from patients with community-acquired pneumonia [PC (abx+)] from the Sequence Read Archive database. A total of 513 antibiotic-resistant gene (ARG) subtypes of 18 ARG types were found. Antibiotic treatment resulted in a significant increase in the abundance of ARGs in intestinal flora of COVID-19 patients and markedly altered the composition of ARG profiles. Grouped comparisons of pairs of Bray-Curtis dissimilarity values demonstrated that the dissimilarity of the HC versus the COVID-19 (abx+) group was significantly higher than the dissimilarity of the HC versus the COVID-19 (abx-) group. The mexF, mexD, OXA_209, major facilitator superfamily transporter, and EmrB_QacA family major facilitator transporter genes were the discriminative ARG subtypes for the COVID-19 (abx+) group. IS621, qacEdelta, transposase, and ISCR were significantly increased in COVID-19 (abx+) group; they greatly contributed toward explaining variation in the relative abundance of ARG types. Overall, our data provide important insights into the effect of antibiotics use on the antibiotic resistance of COVID-19 patients during the COVID-19 epidemic.
Project description:BACKGROUND: Cooked bean powders are a promising novel protein and fiber source for dogs, which have demonstrated potential to alter microbial composition and function for chronic disease control and prevention. This study aimed to determine the impact of cooked navy bean powder fed as a staple food ingredient on the fecal microbiome of healthy adult pet dogs. METHODOLOGY/PRINCIPAL FINDINGS: Fecal samples from healthy dogs prior to dietary control and after 4 wk of dietary treatment with macro- and micronutrient matched diets containing either 0 or 25% cooked navy beans (n = 11 and n = 10, respectively) were analyzed by 454-pyrosequencing of the 16S rRNA gene. There were few differences between dogs fed the control and navy bean diets after 4 wk of treatment. These data indicate that there were no major effects of navy bean inclusion on microbial populations. However, significant differences due to dietary intervention onto both research diets were observed (i.e., microbial populations at baseline versus 4 wk of intervention with 0 or 25% navy bean diets). After 4 wk of dietary intervention on either control or navy bean diet, the Phylum Firmicutes was increased and the Phyla Actinobacteria and Fusobacteria were decreased compared to baseline. CONCLUSIONS: No negative alterations of microbial populations occurred following cooked navy bean intake in dogs, indicating that bean powders may be a viable protein and fiber source for commercial pet foods. The highly variable microbial populations observed in these healthy adult pet dogs at baseline is one potential reason for the difficulty to detect alterations in microbial populations following dietary changes. Given the potential physiological benefits of bean intake in humans and dogs, further evaluation of the impacts of cooked navy bean intake on fecal microbial populations with higher power or more sensitive methods are warranted.
Project description:Chronic widespread pain (CWP) is a complex pain condition that is difficult to treat. The prevalence of CWP approximates ~10% of the general population, with higher prevalence in women. Lack of understanding of molecular mechanisms has been a challenge for diagnosis and treatment of chronic pain. The aim of this study was to explore the systemic protein changes in CWP compared to those in healthy controls (CON). By applying 2-dimensional gel electrophoresis, we analyzed the protein pattern of plasma samples from women with CWP (n=16) and healthy women (n=23). The proteomic data were analyzed using multivariate statistical models, and altered proteins were identified using mass spectrometry. The proteome analysis was further validated by gel-free Western blot. Multivariate statistical data analysis of quantified proteins revealed 22 altered proteins in women with CWP, compared to CON group. Many of the identified proteins are previously known to be involved in different parts of the complement system and metabolic and inflammatory processes, e.g., complement factor B, vitamin D-binding protein, ceruloplasmin, transthyretin and alpha-2-HS-glycoprotein. These results indicate that important systemic protein differences exist between women with CWP and healthy women. Further, this study illustrates the potential use of proteomics to detect biomarkers that may provide new insights into the molecular mechanism(s) of chronic pain. However, further larger investigations are required in order to confirm these findings before it will be possible to identify proteins as potential pain biomarkers for clinical use.
Project description:Gut microbiota alterations in Parkinson's disease (PD) have been found in several studies and are suggested to contribute to the pathogenesis of PD. However, previous results could not be adequately adjusted for a potential confounding effect of PD medication and disease duration, as almost all PD participants were already using dopaminergic medication and were included several years after diagnosis. Here, the gut microbiome composition of treatment-naive de novo PD subjects was assessed compared to healthy controls (HC) in two large independent case-control cohorts (n = 136 and 56 PD, n = 85 and 87 HC), using 16S-sequencing of fecal samples. Relevant variables such as technical batches, diet and constipation were assessed for their potential effects. Overall gut microbiome composition differed between PD and HC in both cohorts, suggesting gut microbiome alterations are already present in de novo PD subjects at the time of diagnosis, without the possible confounding effect of dopaminergic medication. Although no differentially abundant taxon could be replicated in both cohorts, multiple short chain fatty acids (SCFA) producing taxa were decreased in PD in both cohorts. In particular, several taxa belonging to the family Lachnospiraceae were decreased in abundance. Fewer taxonomic differences were found compared to previous studies, indicating smaller effect sizes in de novo PD.