Project description:Non-alcoholic fatty liver disease (NAFLD) is currently the world's most common liver disease, estimated to affect up to one-fourth of the population. Hallmarked by hepatic steatosis, NAFLD is associated with a multitude of detrimental effects and increased mortality. This narrative review investigates the molecular mechanisms of hepatic steatosis in NAFLD, focusing on the four major pathways contributing to lipid homeostasis in the liver. Hepatic steatosis is a consequence of lipid acquisition exceeding lipid disposal, i.e., the uptake of fatty acids and de novo lipogenesis surpassing fatty acid oxidation and export. In NAFLD, hepatic uptake and de novo lipogenesis are increased, while a compensatory enhancement of fatty acid oxidation is insufficient in normalizing lipid levels and may even promote cellular damage and disease progression by inducing oxidative stress, especially with compromised mitochondrial function and increased oxidation in peroxisomes and cytochromes. While lipid export initially increases, it plateaus and may even decrease with disease progression, sustaining the accumulation of lipids. Fueled by lipo-apoptosis, hepatic steatosis leads to systemic metabolic disarray that adversely affects multiple organs, placing abnormal lipid metabolism associated with NAFLD in close relation to many of the current life-style-related diseases.
Project description:AimsMetformin is first-line treatment of type 2 diabetes mellitus and reduces cardiovascular events in patients with insulin resistance and type 2 diabetes. Target tissue for metformin action is thought to be the liver, where metformin distribution depends on facilitated transport by polyspecific transmembrane organic cation transporters (OCTs). Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the western world with strong associations to insulin resistance and the metabolic syndrome, but whether NAFLD affects metformin biodistribution to the liver is not known. In this study, the primary aim was to investigate in vivo hepatic uptake of metformin dynamically in humans with variable degrees of liver affection. As a secondary aim, we wished to correlate hepatic metformin distribution with OCT gene transcription determined in diagnostic liver biopsies.MethodsEighteen patients with biopsy-proven NAFLD were investigated using 11C-metformin PET/CT technique. Gene transcripts of OCTs were determined by real-time polymerase chain reaction (PCR).ResultsWe observed similar hepatic volume of distribution of metformin between patients with simple steatosis and non-alcoholic steatohepatitis (NASH) (Vd 2.38 ± 0.56 vs. 2.10 ± 0.39, P = 0.3). There was no association between hepatic exposure to metformin and the degree of inflammation or fibrosis, and no clear correlation between metformin distribution and OCT gene transcription.ConclusionMetformin is distributed to the liver in patients with NAFLD and the distribution is not impaired by inflammation or fibrosis. The findings imply that metformin action in liver in patients with NAFLD may be preserved.
Project description:Several studies have pointed to fine particulate matter (PM2.5) as the main responsible for air pollution toxic effects. Indeed, PM2.5 may not only cause respiratory and cardiovascular abnormalities but it may also affect other organs such as the liver. Be that as it may, only a few studies have evaluated the PM2.5 effects on hepatic tissue. Moreover, most of them have not analyzed the relationship between particles composition and toxicological effects. In this study, healthy rats were subjected to urban levels of PM2.5 particles in order to assess their structural and functional effects on the liver. During the exposure periods, mean PM2.5 concentrations were slightly higher than the value suggested by the daily guideline of the World Health Organization. The exposed rats showed a hepatic increase of Cr, Zn, Fe, Ba, Tl and Pb levels. This group also showed leukocyte infiltration, sinusoidal dilation, hydropic inclusions and alterations in carbohydrates distribution. These histologic lesions were accompanied by serological changes, such as increase of total cholesterol and triglycerides, as well as genotoxic damage in their nuclei. We also observed significant associations between several biomarkers and PM2.5 composition. Our results show that exposure to low levels of PM2.5 might cause histologic and serological changes in liver tissue, suggesting that PM2.5 toxicity is influenced not only by their concentration but also by their composition and the exposure frequency.
Project description:Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of liver disease worldwide and is estimated to affect nearly a third of the population. Huwe1, also known as ARF-BP1, MULE, and HectH9, is a HECT (homology to E6-APC terminus)-domain E3 ubiquitin ligase originally identified as a binding partner of the tumor suppressor ARF, as well as a direct negative regulator of the tumor suppressor p53. To further elucidate the in vivo role of Huwe1, we generated a liver-specific Huwe1 (Huwe1LKO) knockout mouse model. Surprisingly, liver-specific knockout of Huwe1 protected mice from the development of age-induced hepatic steatosis. To elucidate the mechanism underlying this phenotype, bulk RNAseq analysis was performed on liver tissues from 1-year-old Huwe1LKO and Huwe1WTmice.
Project description:Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of liver disease worldwide and is estimated to affect nearly a third of the population. Huwe1, also known as ARF-BP1, MULE, and HectH9, is a HECT (homology to E6-APC terminus)-domain E3 ubiquitin ligase originally identified as a binding partner of the tumor suppressor ARF, as well as a direct negative regulator of the tumor suppressor p53. To further elucidate the in vivo role of Huwe1, we generated a liver-specific Huwe1 (Huwe1LKO) knockout mouse model. Surprisingly, liver-specific knockout of Huwe1 protected mice from the development of age-induced hepatic steatosis. To elucidate the mechanism underlying this phenotype, mass spectrometry analysis was performed on liver tissues from 1-year-old Huwe1LKO and Huwe1WT mice.
Project description:Non-alcoholic fatty liver disease (NAFLD) is the most pervasive liver pathology worldwide. Here, we demonstrate that the ubiquitin E3 ligase Huwe1 is vital in NAFLD pathogenesis. Using mass spectrometry and RNA sequencing, we reveal that liver-specific deletion of Huwe1 (Huwe1LKO) in 1-year-old mice (approximately middle age in humans) elicits extensive lipid metabolic reprogramming that involves downregulation of de novo lipogenesis and fatty acid uptake, upregulation of fatty acid β-oxidation, and increased oxidative phosphorylation. ChEA transcription factor prediction analysis inferred these changes result from attenuated PPARɑ, LXR, and RXR activity in Huwe1LKO livers. Consequently, Huwe1LKO mice fed chow diet exhibited significantly reduced hepatic steatosis and superior glucose tolerance compared to wild-type mice. Huwe1LKO also conferred protection from high-fat diet-induced hepatic steatosis by 6-months of age, with increasingly robust differences observed as mice reached middle age. Together, we present evidence that Huwe1 plays a critical role in the development of age- and diet-induced NAFLD.
Project description:Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease globally and there is a pressing need for effective treatment. Lipotoxicity and oxidative stress are the important mediators in NAFLD pathogenesis. Lingonberry (Vaccinium vitis-idaea L.) is rich in anthocyanins that have antioxidant and anti-inflammatory properties. The present study investigated the effect of lingonberry supplementation on liver injury in C57BL/6J male mice fed a high-fat diet (HFD) for 12 weeks. Mice fed HFD displayed liver injury with steatosis, increased lipid peroxidation and inflammatory cytokine expression in the liver as compared to mice fed a control diet. Lingonberry supplementation for 12 weeks alleviated HFD-induced liver injury, attenuated hepatic lipid accumulation, and inflammatory cytokine expression. Lingonberry supplementation inhibited the expression of sterol regulatory element-binding protein-1c (SREBP-1c) and acetyl-CoA carboxylase-1 (AAC-1) as well as activated AMP-activated protein kinase (AMPK) in the liver. It also decreased HFD-induced hepatic oxidative stress and aggregation of inflammatory foci. This was associated with a restoration of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione level in the liver. These results suggest that lingonberry supplementation can protect against HFD-induced liver injury partly through attenuation of hepatic lipid accumulation, oxidative stress, and inflammatory response.
Project description:Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes. The role of SENP3 in lipid metabolism, particularly NAFLD, is unclear. Our results showed that hepatic SENP3 was up-regulated in NAFLD patients and an animal model in vivo and after loading hepatocytes with free fatty acids (FFA) in vitro. Intracellular lipid accumulation was determined in SENP3 silenced or overexpressed hepatocytes with/without FFA in vitro. Confirming a role for SENP3, gene silencing was associated in vitro with amelioration of lipid accumulation and overexpression with enhancement of lipid accumulation. SENP3 related genes in NAFLD were determined in vitro using RNA-Seq. Eleven unique genes closely associated with lipid metabolism were generated using bioinformatics. Three selected genes (apoe, a2m and tnfrsf11b) were verified in vitro, showing apoe, a2m and tnfrsf11b were regulated by SENP3 with FFA stimulation. Intrahepatic and circulating APOE, A2M and TNFRSF11B were elevated in NAFLD compared with controls. These data demonstrate the important role of SENP3 in lipid metabolism during the development of NAFLD via downstream genes, which may be useful information in the development of NAFLD. The precise role of SENP3 in NAFLD will be investigated using liver-specific conditional knockout mice in future studies.
Project description:Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in the liver. Clarifying the molecular mechanism of lipid metabolism is crucial for the treatment of NAFLD. We examined miR-192-5p levels in the livers of mice in which NAFLD was induced via a high-fat diet (HFD), as well as in mouse primary hepatocytes and human HepG2 cells treated with free fatty acids (FFAs). MiR-192-5p inhibitor was administered to NAFLD mice and hepatocytes to verify the specific function of miR-192-5p in NAFLD. We validated the target gene of miR-192-5p and further illustrated the effects of this miRNA on the regulation of triglyceride (TG) metabolism. We found that miR-192-5p was significantly increased in the livers of NAFLD mice and FFA-treated hepatocytes. Inhibition of miR-192-5p increased the accumulation of hepatic TGs and aggravated hepatic steatosis in NAFLD mice. In FFA-treated hepatocytes, miR-192-5p inhibitors markedly increased TG content, whereas overexpression of miR-192-5p reduced TG levels. Yin Yang 1 (Yy1) was identified as the target gene of miR-192-5p, which regulates TG synthesis via the YY1/fatty-acid synthase (FASN) pathway. Our results demonstrated that miR-192-5p should be considered a protective regulator in NAFLD that can inhibit hepatic TG synthesis by targeting Yy1.
Project description:BackgroundNon-alcoholic fatty liver disease (NAFLD) is a metabolic disorder with abnormal lipid metabolism. The present study was to identify regulatory genes related to lipid droplets (LDs) abnormal accumulation in NAFLD.Methodstranscriptomic analysis and bioinformatics analysis (GEO database) were used to identify potential genes in abnormal lipid metabolism of NAFLD. A candidate gene MAP3K4 expression were detected by immunohistochemistry staining in NAFLD and controls. RNA interference and immunoblotting were used to verify the roles of MAP3K4 in the formation of hepatic LDs.ResultsA total of 134 candidate genes were screened, including 44 up-regulated genes and 90 down-regulated genes. 29 genes in the protein-protein interaction (PPI) were selected as hub genes, including MAP3K4. The expression levels of MAP3K4 were positively correlated with NAFLD activity score (r = 0.702, p = 0.002). Furthermore, we found a positive correlation of MAP3K4 expression with serum total cholesterol (r = 0.564, p = 0.023), uric acid levels (r = 0.520, p = 0.039), and body mass index (r = 0.574, p = 0.020). Downregulation of MAP3K4 decreased LDs accumulation in HepG2 cells and reduced the expression of CGI-58 and Plin-2 by imbibition of JNK and group IVA cytosolic phospholipase A2 (cPLA2) activation.ConclusionThe study revealed a number of regulatory genes related to hepatic lipid metabolism of NAFLD, and demonstrated that MAP3K4 played a pivotal role in the hepatic lipogenesis of NAFLD.