Lipidome Alterations Following Mild Traumatic Brain Injury.
Ontology highlight
ABSTRACT: Traumatic brain injury (TBI) poses a major health challenge, with tens of millions of new cases reported globally every year. Brain damage resulting from TBI can vary significantly due to factors including injury severity, diffusivity, modality, time delay relative to impact, and exposure to repeated injury events. Untargeted lipidomic analysis of Sprague-Dawley rat serum within 24 hours of mild single and repeat controlled cortical impact (CCI) injury events led to the discovery of biomarker candidates of TBI. Lipid biomarkers have a unique potential to serve as objective molecular measures of the body’s response to injury as their alteration in brain tissue can be more freely observed than for larger protein markers. Animal serum was analyzed via ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in positive and negative ion modes. Known lipid species were identified through matching to in-house tandem MS databases. Machine learning and feature selection approaches were used to construct lipid panels capable of distinguishing serum from injured and uninjured animals across a range of injury severities and timepoints within the first day of injury. The best multivariate lipid panels had over 90% cross-validated sensitivity, selectivity, and accuracy and consisted of species from nine different lipid classes. These mapped onto sphingolipid signaling, autophagy, necroptosis and glycerophospholipid metabolism pathways, with FDR corrected p-values better than 0.05.
ORGANISM(S): Rat Rattus Norvegicus
TISSUE(S): Blood
DISEASE(S): Traumatic Brain Injury
SUBMITTER: Eric Gier
PROVIDER: ST001950 | MetabolomicsWorkbench | Sun Oct 24 00:00:00 BST 2021
REPOSITORIES: MetabolomicsWorkbench
ACCESS DATA