Project description:Background: Cyanobacteria are ecologically significant prokaryotes that can be found in heavy metals contaminated environments. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been extensively considered in cyanobacteria. Recently, most studies have been focused on different habitats using microalgae leads to a remarkable reduction of an array of organic and inorganic nutrients, but what takes place in the extracellular environment when cells are exposed to external supplementation with heavy metals remains largely unknown. Methods: Here, extracellular polymeric substances (EPS) production in strains Nostoc sp. N27P72 and Nostoc sp. FB71 was isolated from different habitats and thenthe results were compared and reported . Result: Cultures of both strains, supplemented separately with either glucose, sucrose, lactose, or maltose showed that production of EPS and cell dry weight were boosted by maltose supplementation. The production of EPS (9.1 ± 0.05 μg/ml) and increase in cell dry weight (1.01 ± 0.06 g/l) were comparatively high in Nostoc sp. N27P72 which was isolated from lime stones.The cultures were evaluated for their ability to remove Cu (II), Cr (III), and Ni (II) in culture media with and without maltose. The crude EPS showed metal adsorption capacity assuming the order Ni (II)> Cu (II)> Cr (III) from the metal-binding experiments .Nickel was preferentially biosorbed with a maximal uptake of 188.8 ± 0.14 mg (g cell dry wt) -1 crude EPS. We found that using maltose as a carbon source can increase the production of EPS, protein, and carbohydrates content and it could be a significant reason for the high ability of metal absorbance. FT-IR spectroscopy revealed that the treatment with Ni can change the functional groups and glycoside linkages in both strains. Results of Gas Chromatography-Mass Spectrometry (GC–MS) were used to determine the biochemical composition of Nostoc sp. N27P72, showed that strong Ni (II) removal capability could be associated with the high silicon containing heterocyclic compound and aromatic diacid compounds content.
Project description:Background: Cyanobacteria are ecologically significant prokaryotes that can be found in heavy metals contaminated environments. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been extensively considered in cyanobacteria. Recently, most studies have been focused on different habitats using microalgae leads to a remarkable reduction of an array of organic and inorganic nutrients, but what takes place in the extracellular environment when cells are exposed to external supplementation with heavy metals remains largely unknown. Methods: Here, extracellular polymeric substances (EPS) production in strains Nostoc sp. N27P72 and Nostoc sp. FB71 was isolated from different habitats and thenthe results were compared and reported . Result: Cultures of both strains, supplemented separately with either glucose, sucrose, lactose, or maltose showed that production of EPS and cell dry weight were boosted by maltose supplementation. The production of EPS (9.1 ± 0.05 μg/ml) and increase in cell dry weight (1.01 ± 0.06 g/l) were comparatively high in Nostoc sp. N27P72 which was isolated from lime stones.The cultures were evaluated for their ability to remove Cu (II), Cr (III), and Ni (II) in culture media with and without maltose. The crude EPS showed metal adsorption capacity assuming the order Ni (II)> Cu (II)> Cr (III) from the metal-binding experiments .Nickel was preferentially biosorbed with a maximal uptake of 188.8 ± 0.14 mg (g cell dry wt) -1 crude EPS. We found that using maltose as a carbon source can increase the production of EPS, protein, and carbohydrates content and it could be a significant reason for the high ability of metal absorbance. FT-IR spectroscopy revealed that the treatment with Ni can change the functional groups and glycoside linkages in both strains. Results of Gas Chromatography-Mass Spectrometry (GC–MS) were used to determine the biochemical composition of Nostoc sp. N27P72, showed that strong Ni (II) removal capability could be associated with the high silicon containing heterocyclic compound and aromatic diacid compounds content. Conclusion: The results of this studyindicatede that strains Nostoc sp. N27P72 can be a good candidate for the commercial production of EPS and might be utilized in bioremediation field as an alternative to synthetic and abiotic flocculants.
Project description:Although extensive epidemiological and laboratory studies have been performed to identify the environmental and immunological causes of atopy, genetic predisposition seems to be the biggest risk factor for allergic diseases. The onset of atopic diseases may be the result of heritable changes of gene expression, without any alteration in DNA sequences occurring in response to early environmental stimuli. Findings suggest that the establishment of a peculiar epigenetic pattern may also be generated by oxidative stress (OS) and perpetuated by the activation of OS-related genes. Analyzing the role of maternal and neonatal oxidative stress and oxidative stress-inducible genes, the purpose of this review was to summarize what is known about the relationship between maternal and neonatal OS-related genes and the development of atopic diseases.
Project description:We report for the first time movement of Correia Repeat Enclosed Elements, through inversion of the element at its chromosomal location. Analysis of Ion Torrent generated genome sequence data from Neisseria gonorrhoeae strain NCCP11945 passaged for 8 weeks in the laboratory under standard conditions and stress conditions revealed a total of 37 inversions: 24 were exclusively seen in the stressed sample; 7 in the control sample; and the remaining 3 were seen in both samples. These inversions have the capability to alter gene expression in N. gonorrhoeae through the previously determined activities of the sequence features of these elements. In addition, the locations of predicted non-coding RNAs were investigated to identify potential associations with CREE. Associations varied between strains, as did the number of each element identified. The analysis indicates a role for CREE in disrupting ancestral regulatory networks, including non-coding RNAs. RNA-Seq was used to examine expression changes related to Correia repeats in the strain
Project description:Early pregnancy exposure to endocrine disrupting chemicals (EDCs) may contribute to poor birth outcomes through oxidative stress (OS)-mediated disruption of the maternal and fetal milieu. Most studies have investigated the effect of single EDC exposures on OS. Assess the association of uniquely weighted mixtures of early pregnancy exposures with the maternal and neonatal OS markers. Prospective analysis of mother-infant dyads. University hospital. 56 mother-infant dyads. The association of OS markers (nitrotyrosine, dityrosine, chlorotyrosine) in maternal first trimester and term, and cord blood plasma with maternal first trimester exposure levels of each of 41 toxicants (trace elements, metals, phenols, and phthalates) from 56 subjects was analyzed using Spearman correlations and linear regression. The association of OS markers with inflammatory cytokines and birth outcomes were analyzed by Spearman correlation and linear regression analysis, respectively. Weighted mixtures of early pregnancy exposures were created by principal component analysis and offspring sex-dependent and independent associations with oxidative stress markers were assessed. (1) An inverse relationship between levels of maternal/cord OS markers and individual EDCs was evident. In contrast, when assessed as EDC mixtures, both direct and inverse associations were evident in a sex-specific manner; (2) the maternal term OS marker, nitrotyrosine, was inversely associated with gestational age, and (3) both direct and inverse associations were evident between the 3 OS markers and individual cytokines. Provides proof of concept that effects of exposures on OS varies when assessed as EDC mixtures versus individually.
Project description:ObjectiveThis study tested the mechanism of the oxidative stress (OS)-induced senescence pathway at the feto-maternal interface cells.MethodsPrimary amnion mesenchymal cells (AMCs), chorion and decidual cells isolated from the placental membranes of women at normal term (not in labor) were exposed to OS-inducing cigarette smoke extract (CSE) for 48 h. Reactive oxygen species (ROS) was measured using 2'7'-dichlorodihydrofluorescein. Western blot analysis determined phosphorylated (P) p38MAPK and p53 expression. Senescence-associated β-Galactosidase (SA-β-Gal) and matrix metallopeptidase 9 (MMP9) histochemistry were used to measure senescence and inflammation respectively. Cotreatment of cells with the antioxidant, N-acetyl cysteine (NAC), or the p38MAPK inhibitor, SB203580 (SB), verified the activation specificity.ResultsCSE increased ROS production from AMCs, chorion cells, and decidual cells (P < 0.05) compared to controls. Western blot analysis determined that CSE induced p38MAPK activation (P < 0.05) and cotreatment with NAC inhibited ROS production and p38MAPK activation (P < 0.05) in all cell types. CSE did not increase p53 phosphorylation in any of the cells; however, AMCs showed constitutive P-p53 expression. CSE increased senescence in AMCs and chorion cells compared to controls (P = 0.01 and P = 0.003, respectively); however, senescence was not observed in decidual cells. Senescence was significantly reduced following cotreatment with SB and NAC (AMCs; P = 0.01 and chorion; P = 0.009). CSE increased MMP9 in all cells that was reduced by NAC.ConclusionOS induced p38MAPK activation and inflammation in all cell types that was associated with senescence in fetal cells but not in maternal cells.
Project description:Metal exposure has been associated with a wide range of adverse birth outcomes and oxidative stress is a leading hypothesis of the mechanism of action of metal toxicity. We assessed the relationship between maternal exposure to essential and non-essential metals and metalloids in pregnancy and oxidative stress markers, and sought to identify windows of vulnerability and effect modification by fetal sex. In our analysis of 215 women from the PROTECT birth cohort study, we measured 14 essential and non-essential metals in urine samples at three time points during pregnancy. The oxidative stress marker 8-iso-prostaglandin F2α (8-iso-PGF2α) and its metabolite 2,3-dinor-5,6-dihydro-15-15-F2t-IsoP, as well as prostaglandin F2α (PGF2α), were also measured in the same urine samples. Using linear mixed models, we examined the main effects of metals on markers of oxidative stress as well as the visit-specific and fetal sex-specific effects. After adjustment for covariates, we found that a few urinary metal concentrations, most notably cesium (Cs) and copper (Cu), were associated with higher 8-iso-PGF2α with effect estimates ranging from 7.3 to 14.9% for each interquartile range, increase in the metal concentration. The effect estimates were generally in the same direction at the three visits and a few were significant only among women carrying a male fetus. Our data show that higher urinary metal concentrations were associated with elevated biomarkers of oxidative stress. Our results also indicate a potential vulnerability of women carrying a male fetus.
Project description:Intensive selection for milk production has led to reduced reproductive efficiency in high-producing dairy cattle. The impact of intensive milk production on oocyte quality as well as early embryo development has been established but few analyses have addressed this question at the initiation of implantation, a critical milestone ensuring a successful pregnancy and normal post-natal development. Our study aimed to determine if contrasted maternal metabolism affects the previously described sensory properties of the endometrium to the conceptus in cattle. Following embryo transfer at Day 7 post-oestrus, endometrial caruncular (CAR) and intercaruncular (ICAR) areas were collected at Day 19 from primiparous postpartum Holstein-Friesian cows that were dried-off immediately after parturition (i.e., never milked; DRY) or milked twice daily (LACT). Gene quantification indicated no significant impact of lactation on endometrial expression of transcripts previously reported as conceptus-regulated (PLET1, PTGS2, SOCS6) and interferon-tau stimulated (RSAD2, SOCS1, SOCS3, STAT1) factors or known as female hormone-regulated genes (FOXL2, SCARA5, PTGS2). Compared with LACT cows, DRY cows exhibited mRNA levels with increased expression for FOXL2 transcription factor and decreased expression for oxidative stress-related genes (CAT, SOD1, SOD2). In vivo and in vitro experiments highlighted that neither interferon-tau nor FOXL2 were involved in transcriptional regulation of CAT, SOD1 and SOD2. In addition, our data showed that variations in maternal metabolism had a higher impact on gene expression in ICAR areas. Collectively, our findings prompt the need to fully understand the extent to which modifications in endometrial physiology drive the trajectory of conceptus development from implantation onwards when maternal metabolism is altered.
Project description:Maternal obese environment has been reported to induce oxidative stress and meiotic defects in oocytes, however the underlying molecular mechanism remains unclear. Here, using mice fed a high fat diet (HFD) as an obesity model, we first detected enhanced reactive oxygen species (ROS) content and reduced Sirt3 expression in HFD oocytes. We further observed that specific depletion of Sirt3 in control oocytes elevates ROS levels while Sirt3 overexpression attenuates ROS production in HFD oocytes, with significant suppression of spindle disorganization and chromosome misalignment phenotypes that have been reported in the obesity model. Candidate screening revealed that the acetylation status of lysine 68 on superoxide dismutase (SOD2K68) is dependent on Sirt3 deacetylase activity in oocytes, and acetylation-mimetic mutant SOD2K68Q results in almost threefold increase in intracellular ROS. Moreover, we found that acetylation levels of SOD2K68 are increased by ~80% in HFD oocytes and importantly, that the non-acetylatable-mimetic mutant SOD2K68R is capable of partially rescuing their deficient phenotypes. Together, our data identify Sirt3 as an important player in modulating ROS homeostasis during oocyte development, and indicate that Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress and meiotic defects in oocytes under maternal obese conditions.
Project description:BackgroundOxidative stress in placenta is associated with the occurrence of adverse pregnancy outcomes in sow, but there are few satisfactory treatment strategies for these conditions. This study investigated the potential of cysteamine (CS) as an antioxidant protectant for regulating the reproductive performance, redox status, and placental angiogenesis of sows.MethodsThe placental oxidative stress status and vascular density of piglets with different birth weights: < 1.0 kg (low birth weight, LBW) and 1.4-1.6 kg (normal birth weight, NBW) were evaluated, followed by allotting 84 sows to four treatments (n = 21) and feeding them with a basal diet supplemented with 0, 100, 300, or 500 mg/kg of CS from d 85 of gestation to d 21 of lactation, respectively. Placenta, serum, and colostrum samples of sows or piglets were collected, and the characteristics of sows and piglets were recorded. Furthermore, the in vivo results were validated using porcine vascular endothelial cells (PVECs).ResultsCompared with the NBW placentae, the LBW placentae showed increased oxidative damage and were vulnerable to angiogenesis impairment. Particularly, H2O2-induced oxidative stress prompted intracellular reactive oxygen species generation and inhibited the tube formation and migration of PVECs as well as the expression of vascular endothelial growth factor-A (VEGF-A) in vitro. However, dietary CS supplementation can alleviate oxidative stress and improve the reproductive performance of sows. Specifically, compared with the control group, dietary 100 mg/kg CS could (1) decrease the stillbirth and invalid rates, and increase both the piglet birth weight in the low yield sows and the placental efficiency; (2) increase glutathione and reduce malondialdehyde in both the serum and the colostrum of sows; (3) increase the levels of total antioxidant capacity and glutathione in LBW placentae; (4) increase the vascular density, the mRNA level of VEGF-A, and the immune-staining intensity of platelet endothelial cell adhesion molecule-1 in the LBW placentae. Furthermore, the in vitro experiment indicated that CS pre-treatment could significantly reverse the NADPH oxidase 2-ROS-mediated inactivation of signal transducer and activator of transcription-3 (Stat3) signaling pathway induced by H2O2 inhibition of the proliferation, tube formation, and migration of PVECs. Meanwhile, inhibition of Stat3 significantly decreased the cell viability, tube formation and the VEGF-A protein level in CS pretreated with H2O2-cultured PVECs.ConclusionsThe results indicated that oxidative stress and impaired angiogenesis might contribute to the occurrence of LBW piglets during pregnancy, but CS supplementation at 100 mg/kg during late gestation and lactation of sows could alleviate oxidative stress and enhance angiogenesis in placenta, thereby increasing birth weight in low yield sows and reducing stillbirth rate. The in vitro data showed that the underlying mechanism for the positive effects of CS might be related to the activation of Stat3 in PVECs.